焦虑、抑郁和精神分裂症是复杂的精神疾病,其特征是神经回路、神经递质系统和大脑连接中断,导致情绪调节和认知功能受损。本综述研究了影响这些疾病的遗传、环境和神经生物学因素,强调了神经递质(如血清素、多巴胺和去甲肾上腺素)在情绪调节、应激反应和神经可塑性中的重要作用。这些发现强调了个性化治疗方法的必要性。本综述还探讨了将药物干预与非药物治疗方式相结合的综合策略,包括针灸、草药和正念,这些策略有望实现个性化治疗。神经成像和神经刺激技术的进步,如特征向量中心性映射和机器学习驱动的分析,提供了对大脑连接的更深入了解,并能够实施更有针对性的干预措施。这对于精神分裂症尤其重要,因为多巴胺介导的纹状体前额叶连接中断会导致认知缺陷和临床症状。然而,目前的局限性,例如对这些疾病背后的神经回路的理解不足以及传统治疗对某些亚群的有效性有限,凸显了现有研究和治疗方法中的关键差距。此外,本文还讨论了如何将计算模型与传统医学相结合以增强我们对神经递质相互作用和神经通路的理解。这种整合促进了创新疗法,既能解决短期症状,又能解决长期恢复能力。这种跨学科方法将基础神经科学与临床实践联系起来,为有效的个性化治疗铺平了道路,并为精神疾病患者带来了新的希望。
摘要 纺锤波是非快速眼动 (NREM) 睡眠期间的标志性振荡。它们与慢振荡 (SO) 一起被认为在巩固学习信息方面发挥着机械作用。纺锤波的数量和空间分布与睡眠前学习期间的大脑活动以及睡眠后的记忆表现有关。如果纺锤波被吸引到通过睡前学习任务激发的皮质区域,这就引出了一个问题:纺锤波的空间分布是否灵活,以及它们的区域表达是否也可以通过实验性大脑刺激来操纵。我们使用兴奋性经颅直流电刺激 (tDCS) 在重复测量实验设计中刺激左右运动皮质。刺激后,我们在睡眠期间记录了高密度脑电图 (EEG),以测试局部刺激如何调节睡眠纺锤波的区域表达。事实上,我们表明,睡眠前局部皮质部位的兴奋性 tDCS 会使纺锤波的表达偏向随后睡眠期间的兴奋位置。局部 tDCS 刺激对 SO 没有影响。这些结果表明睡眠纺锤波的空间拓扑结构既不是硬连线的也不是随机的,纺锤波可以灵活地指向外源刺激的皮质回路。关键词 1) 振荡,2) 睡眠纺锤波,3) 刺激
美国 5- 美国佛罗里达州盖恩斯维尔佛罗里达大学生理科学系 6- 美国佛罗里达州盖恩斯维尔佛罗里达大学药理学和治疗学系 资金:这项工作得到了 NIH 对 Habibeh Khoshbouei (HK) 的资助:R01NS071122- 07A1 (给 HK)、R01DA026947-10、美国国立卫生研究院主任办公室拨款 1S10OD020026-01 (给 H. K) R01DA058143-02 (给 HK)、R21NS133384-01 (给 HK)、Evelyn F. 和 William L. McKnight 脑研究所的 Gator Neuroscholars 计划 (给 AG) 以及 Karen Toffler 慈善信托基金 (给 AG)。摘要众所周知,中脑多巴胺神经元影响中枢神经系统功能,但越来越多的证据表明它们对外周免疫系统有影响。我们在此证明,中脑多巴胺神经元通过多突触通路从背迷走神经复合体 (DVC) 到腹腔神经节形成到脾脏的回路。中脑多巴胺神经元调节表达 D1 样和 D2 样多巴胺受体的 DVC 神经元的活动。中脑多巴胺神经元的体内激活会诱导 DVC 中的多巴胺释放,并增加 DVC 和腹腔神经节中的即刻早期基因表达,表明神经元活动增强。激活这个中脑至脾脏回路可减轻脾脏重量并减少幼稚 CD4 + T 细胞群,而不会影响总 T 细胞数量。这些发现揭示了一条功能性的中脑- DVC-腹腔神经节-脾脏通路,中脑多巴胺神经元通过该通路调节脾脏免疫。这些对免疫系统神经调节的新见解对于涉及多巴胺神经传递改变的疾病具有重要意义,并有望成为免疫治疗干预的潜在靶点。简介虽然中脑多巴胺神经元在中枢和外周调节中起着关键作用,但将它们与外周免疫器官连接起来的精确回路仍然很大程度上未定义。虽然在揭示身体与大脑之间的通讯方面已经取得了实质性进展 1 ,但反向通路(大脑如何影响外周器官,特别是通过多巴胺信号传导)仍不清楚。新出现的证据强调了大脑对外周系统的重要影响,特别是在神经免疫相互作用的背景下。例如,Zhu 及其同事 2 发现了中枢神经系统疼痛处理与脾脏免疫之间的功能联系,这表明参与免疫调节的神经通路远远超出了大脑的直接环境,影响着脾脏等关键器官。这些发现意味着中脑多巴胺能神经元可能在协调外周免疫反应中发挥着以前未曾发现的作用。在帕金森病 (PD) 中,中脑多巴胺神经元的退化与外周免疫功能障碍的变化密切相关,据信
目的:本研究旨在了解神经认知文献在多大程度上支持和改进了 Csikszentmihalyi [1] 的心流体验特征,即依赖于注意力和执行功能的过程 [2]。方法:PRISMA 系统评价纳入了心流相关的观察性研究,这些研究提出了神经心理学、神经生理学和/或生物统计学测量,涉及注意力和执行功能:解决问题、反应监测和决策。结果:神经科学文献表明,心流体验:a) 激活不费力的认知资源,视觉聚焦、分散和持续注意力的精确度提高,有证据表明其受到社会因素的调节;b) 在未经验证的测量中,是更高解决问题技能的指标;c) 在反应监测(N-back)和冒险(赌博)任务期间激活广泛而差异化的大脑活动,提供符合我们对任务意义的差异化理解的神经学指标,任务意义是一种情绪和认知更新过程,通过相应的大脑回路,涉及基底神经节、颞叶、岛叶和前额叶区域; d) 在审查的观察性研究中,尚未与决策相关。结论:这项工作凸显了该领域缺乏跨学科性。实施神经认知策略似乎是实现和优化令人满意的时刻的潜在心理资源。广泛的社区心理教育或培训将扩大日常生活和工作承诺。
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 23 日发布。;https://doi.org/10.1101/2025.01.23.634521 doi:bioRxiv 预印本
<58.6 kPad @ 0.063 kg/s PGW 全开旁通方向,一次侧堵塞 外部泄漏 <1.9e-4 ssc/s GHe @ 85 psid 零液体泄漏 机械质量 最大设计压力 150 psid 1,034.3 kPad 耐压 225 psid 1,551.4 kPad 爆破压力 375 psid 2,585.6 kPad 电气 最大功耗 启动时 20 W 电压范围 22-32 Vdc 环境 振动:符合 X 轴:15.09 Grms、Y 轴:44.2 Grms、Z 轴:21.61 Grms 冲击:符合 120 G (100 Hz)、1,560 G (740 Hz)、1,560 G (10,000 Hz) 工作温度50 - 117 °F 10 至 47.2 °C 注意:这些规格可修改以满足客户要求。请联系 Sierra Space 了解设计选项,以满足特定客户需求。
摘要 背景 基因组筛查发现,在对免疫检查点阻断 (ICB) 有耐药性的肿瘤中存在干扰素-γ (IFN γ) 通路缺陷。然而,其非突变调控和治疗发展的可逆性仍不太清楚。 目的 我们旨在鉴定与 ICB 耐药性相关的可用药组蛋白去乙酰化酶 (HDAC),并开发一种针对肝细胞癌 (HCC) 患者的易于转化的联合治疗方法。 设计 我们通过单细胞 RNA 测序将来自 pembrolizumab 试验 (NCT03419481) 的 HCC 患者的预后结果与所有 HDAC 亚型的肿瘤细胞表达相关联。我们使用免疫分析、单细胞多组学和染色质免疫沉淀测序研究了选择性 HDAC 抑制在 4 种 ICB 耐药原位和自发模型中的治疗效果和作用机制,并通过基因调控和共培养系统进行验证。结果 HDAC1 / 2 / 3 表达较高的 HCC 患者表现出 IFN γ 信号传导缺陷,并且在 ICB 治疗中生存率较差。选择性 I 类 HDAC 抑制剂 CXD101 的短暂治疗使 HDAC1/2/3 高肿瘤对 ICB 疗法重新敏感,导致 CD8 + T 细胞依赖性抗肿瘤和记忆 T 细胞反应。从机制上讲,CXD101 与 ICB 协同作用,通过增强染色质可及性和 IFN γ 反应基因的 H3K27 过度乙酰化来刺激 STAT1 驱动的抗肿瘤免疫。肿瘤内募集 IFN γ + GZMB + 细胞毒性淋巴细胞进一步促进 CXD101 诱导的 Gasdermin E (GSDME) 的裂解,从而以 STAT1 依赖的方式触发细胞焦亡。值得注意的是,GSDME 的缺失模仿了 STAT1 敲除,通过阻止细胞焦亡和 IFN γ 反应消除了 CXD101-ICB 联合疗法的抗肿瘤功效和生存益处。结论我们的免疫表观遗传策略利用 IFN γ 介导的网络来增强癌症免疫循环,揭示了自我强化的 STAT1-GSDME 细胞焦亡回路作为正在进行的 II 期试验的机制基础,以应对 ICB 耐药性(NCT05873244)。
将 DNA 有效载荷靶向人类 (h)iPSC 涉及多个耗时、低效的步骤,每个构建体都必须重复这些步骤。在这里,我们介绍了 STRAIGHT-IN Dual,它能够在一周内以 100% 的效率同时、等位基因特异性、单拷贝整合两个 DNA 有效载荷。值得注意的是,STRAIGHT-IN Dual 利用 STRAIGHT-IN 平台实现几乎无疤痕的货物整合,促进组件回收以进行后续的细胞修饰。使用 STRAIGHT-IN Dual,我们研究了启动子选择和基因语法如何影响转基因沉默,并展示了这些设计特征对 hiPSC 向神经元正向编程的影响。此外,我们设计了一种格拉瑞韦诱导的 synZiFTR 系统来补充广泛使用的四环素诱导系统,提供转录因子和功能报告基因的独立、可调和时间控制的表达。 STRAIGHT-IN Dual 生成同质基因工程 hiPSC 群体的空前效率和速度代表了合成生物学在干细胞应用领域的重大进步,并为精准细胞工程开辟了机会。
1 印度西孟加拉邦米德纳普尔学院生理学系,邮编 721101;2 美国纽约州花园城阿德菲大学文理学院生物系及美国纽约州花园城阿德菲大学戈登 F. 德纳心理学院心理学系;3 美国德克萨斯州休斯顿德克萨斯南方大学药学院药学系,邮编 77004;4 美国密苏里州圣路易斯华盛顿大学医学院精神病学系;5 美国俄亥俄州克利夫兰凯斯西储大学医学院精神病学系;6 巴西米纳斯吉拉斯联邦大学生物科学研究所遗传学、生态学和进化系,邮编 31270-901; 7 综合组学和应用生物技术研究所,Nonakuri,Purba Medinipur,721172,西孟加拉邦,印度;8 西方健康科学大学体育、锻炼和心理健康中心成瘾研究与教育部,加利福尼亚州波莫纳,91766,美国;9 匈牙利布达佩斯罗兰大学心理学研究所,1053,匈牙利;10 莱特州立大学邦绍夫特医学院和代顿 VA 医学中心精神病学系,俄亥俄州代顿,45435,美国;11 佛蒙特大学精神病学系,佛蒙特州伯灵顿,05405,美国;12 肯尼斯·布鲁姆行为与神经遗传研究所营养基因组学部,德克萨斯州奥斯汀,78701,美国; 13 以色列阿里埃勒大学阿德尔森医学院分子生物学系
摘要。目的。经颅电刺激 (TES) 是一种调节大脑活动和治疗疾病的有效技术。然而,TES 主要用于刺激浅表大脑区域,无法达到更深的目标。如 [1] 中所述,注入电流在头部的扩散受到体积传导和电流通过具有不同电导率的头部层时额外扩散的影响。在本文中,我们介绍了 DeepFocus,这是一种旨在刺激大脑“奖励回路”中深层大脑结构的技术(例如眶额皮质、布罗德曼 25 区、杏仁核等)。方法:为了实现这一点,DeepFocus 除了在头皮上放置电极外,还利用经鼻电极放置(筛板下和蝶窦内),并优化这些电极上的电流注入模式。为了量化 DeepFocus 的好处,我们开发了 DeepROAST 模拟和优化平台。 DeepROAST 使用真实的头部模型模拟复杂颅底骨骼几何形状对 DeepFocus 配置产生的电场的影响。它还使用优化方法来搜索局部和有效的电流注入模式,我们在模拟和尸体研究中使用这些模式。主要结果。在模拟中,优化的 DeepFocus 模式在几个感兴趣的区域比仅限头皮的电极产生了更大、更聚焦的场。在尸体研究中,DeepFocus 模式在内侧眶额皮质 (OFC) 产生了大场,其幅度与刺激研究相当,并且结合已建立的皮质刺激阈值,表明场强度足以产生神经反应,例如在 OFC。意义。这种微创刺激技术可以更有效、更低风险地针对深部脑结构来治疗多种神经疾病。