[1] Heck,Matthias等。“结合阵列分类和本地化的雪崩自动检测。”地球表面动力学7.2(2019):491-503。地球表面动力学7.2(2019):491-503。
1 助理教授,2,3,4 本科生 1,2,3,4 机械工程系,1,2,3,4 戈达瓦里工程技术学院,Rajamundry-533296,安得拉邦,印度 摘要:遥控的重要性日益增加,这刺激了能够飞行的无人驾驶飞行器 (UAV) 的发展,从小型昆虫大小的无人机到大型传统飞机。这些无人机在农业、监视、环境监测、搜索和救援、航空摄影、基础设施检查和科学研究领域有着广泛的应用。本研究旨在通过使用完全自动化的工作流程提高 0 度攻角 (AOA) 下的升阻比来优化固定翼无人机的气动形状。我们的研究包括遗传算法 (GA),它模仿自然选择的进化过程以在复杂的问题空间中发现最优解,以及 PyFluent,一种强大的计算流体动力学 (CFD) 工具。这项工作分为三个阶段:初始阶段、优化阶段和模拟阶段。最佳翼型配置在 0 度 AOA 时实现 24.8 的升阻比,特别是在 40 m/s 的速度下。索引术语 - 无人机、升阻比、0 度 AOA、遗传算法 (GA)、PyFluent I. 简介
1.1 背景。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 1.2 问题陈述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 1.3 研究目标。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 1.4 方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 1.5 假设/限制。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 1.6 贡献。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 1.7 论文概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4
摘要 — 考虑到机械系统动力学分析的多体方法,本文旨在构建一个简单的计算机模型来描述执行纵向运动的固定翼飞机的动力学。为此,分析了一种简化的飞行器模型,该模型没有控制面,具有轴向推力,并且空气动力学作用有限。然后使用 Digital DATCOM 软件对气动系数进行建模,同时将升降舵也视为控制面。首先,在多体动力学的背景下研究飞机动力学。然后,分析了被视为本文示例的案例研究,即 Cessna 172 Skyhawk 飞机。通过对外部施加的作用和气动系数进行建模,随后分析了飞行起飞阶段背后的基本力学。在本文中,使用拉格朗日公式方法驱动描述示例动态行为的运动方程。然后在 MATLAB 环境中构建的计算机代码中实现了示例的动态模型。通过这样做,该过程的目标是尽可能准确地开发 Cessna 172 Skyhawk 飞机的虚拟模型。如本文使用数值模拟所示,本文分析的案例研究的计算机模型能够模拟
摘要:近几十年来,传感器技术的使用日益广泛,以及飞机维护和操作数字化程度的提高,使得人们能够检测、诊断和预测飞机结构、系统和部件的健康状况。预测性维护和密切相关的概念,如预测和健康管理 (PHM),从研究角度来看,引起了越来越多的关注,涵盖了越来越多的原创研究论文和评论论文。在考虑后者时,仍然存在一些限制,包括缺乏研究方法定义,以及缺乏关于预测性维护的评论论文,这些论文侧重于国防背景下的军事应用。这篇评论论文旨在通过提供系统的两阶段预测性维护评论来解决这些差距,重点关注国防领域,特别关注固定翼国防飞机的运营和维护。虽然国防飞机与民航平台有相似之处,但国防飞机在操作和环境方面表现出显著差异,并且具有不同的性能目标和约束。该评论采用了一种系统方法,结合了所考虑领域的文献计量分析,以及一组对齐的评论论文的文本处理和聚类,以定位后续讨论的核心主题。本次讨论重点介绍了最先进的应用程序和相关
摘要:近几十年来,传感器技术的使用日益广泛,以及飞机维护和操作数字化程度的提高,使得人们能够检测、诊断和预测飞机结构、系统和部件的健康状况。预测性维护和密切相关的概念,如预测和健康管理 (PHM),从研究角度来看,引起了越来越多的关注,涵盖了越来越多的原创研究论文和评论论文。在考虑后者时,仍然存在一些限制,包括缺乏研究方法定义,以及缺乏关于预测性维护的评论论文,这些论文侧重于国防背景下的军事应用。这篇评论论文旨在通过提供系统的两阶段预测性维护评论来解决这些差距,重点关注国防领域,特别关注固定翼国防飞机的运营和维护。虽然国防飞机与民航平台有相似之处,但国防飞机在操作和环境方面表现出显著差异,并且具有不同的性能目标和约束。该评论采用了一种系统方法,结合了所考虑领域的文献计量分析,以及一组对齐的评论论文的文本处理和聚类,以定位后续讨论的核心主题。本次讨论重点介绍了最先进的应用程序和相关
线性控制方法。一种常见的候选方法是非线性动态逆,它涉及使用微分代数方法将非线性模型转换为完整或部分模型。动态逆的基本原理是使用代数方法的逆变换来消除从输入到输出的非线性(输入/输出线性化),从而获得系统的非线性控制器。这是通过强制稳定的线性误差动力学来实现的。优点是它可以实现简单的设计,不需要繁琐的增益调度,具有易于在线实施的特点,因为它可以产生控制器的“闭式解”,并且保证了误差动力学的渐近稳定性。这种方法的缺点是对建模不准确性很敏感,并且与线性方法不同,这种方法在大多数情况下会得到一个模型相关的控制器。
摘要 - 无人驾驶飞行器 (UAV) 已广泛应用于经济、安全、军事等许多领域,包括空中拍摄、交通状态更新、在建建筑监视和娱乐……如今,无人机研究是最受关注的领域,尤其是在自主控制器方面。在本文中,我们提出了一种用于倒 V 型尾翼配置的固定翼无人机的实时控制算法模型,包括自动起飞阶段、航路点跟踪阶段和自动着陆阶段。该算法是在 matlab/simulink 上构建为标准化模型,并使用 PID 控制器进行实现。使用 X-Plane 模拟算法的性能 - X-Plane 是由 Laminar Research 开发并由美国联邦航空管理局 (FAA-USA) 认证用于训练飞行员的模拟器,它能够使用实时数据和最高精度进行模拟飞行
图 3.29:升降舵偏转信号 ...................................................................................................... 37 图 3.30:方向舵偏转信号 ...................................................................................................... 37 图 3.31:沿 X 方向的速度 B(“u”) ............................................................................................. 38 图 3.32:沿 Y 方向的速度 B(“v”) ............................................................................................. 38 图 3.33:沿 Z 方向的速度 B(“w”) ............................................................................................. 38 图 3.34:滚转速率(“p”) ............................................................................................................. 39 图 3.35:俯仰速率(“q”) ............................................................................................................. 39 图 3.36:偏航速率(“r”) ............................................................................................................. 39 图 3.37:滚转角度(“Phi”) ............................................................................................................. 40 图 3.38:俯仰角度(“Theta”) ........................................................................................... 40 图 3.39:偏航角(“Psi”)................................................................................................... 40 图 3.40:迎角