摘要:本文在引言部分简要讨论了牵引大型飞机的基本原理和方法。然后对各类大型客机牵引过程中发生的事件进行了分析。在此基础上,找出了拖曳过程中造成飞机损坏的主要原因。在此基础上,确定了已识别风险因素的百分比份额,表明主要原因是广为人知的人为因素,特别是操作和机组人员失误。最后,根据分析结果,制定了可实施的预防建议,以避免类似事件的发生。所进行的分析促进了该领域的进一步研究和持续风险分析的必要性,从而最大限度地减少拖曳过程中发生的事故数量。
摘要:文章在绪论部分,简要讨论了牵引大型飞机的基本原理和方法。然后,对牵引各种大型客机时发生的事件进行分析。在此基础上,找出了拖曳过程中造成飞机损坏的主要原因。在此基础上,确定了已识别风险因素的百分比份额,表明主要原因是广为人知的人为因素,特别是操作和机组人员失误。最后,根据分析结果,制定了可以实施的预防建议,以避免类似事件的发生。所进行的分析促进了该领域的进一步研究和持续风险分析的必要性,这应尽量减少拖曳过程中发生的事故数量。
摘要:本文在引言部分简要讨论了牵引大型飞机的基本原理和方法。然后对各类大型客机牵引过程中发生的事件进行了分析。在此基础上,找出了拖曳过程中造成飞机损坏的主要原因。在此基础上,确定了已识别风险因素的百分比份额,表明主要原因是广为人知的人为因素,特别是操作和机组人员失误。最后,根据分析结果,制定了可实施的预防建议,以避免类似事件的发生。所进行的分析促进了该领域的进一步研究和持续风险分析的必要性,从而最大限度地减少拖曳过程中发生的事故数量。
摘要:本文在引言部分简要讨论了牵引大型飞机的基本原理和方法。然后对各类大型客机牵引过程中发生的事件进行了分析。在此基础上,找出了拖曳过程中造成飞机损坏的主要原因。在此基础上,确定了已识别风险因素的百分比份额,表明主要原因是广为人知的人为因素,特别是操作和机组人员失误。最后,根据分析结果,制定了可实施的预防建议,以避免类似事件的发生。所进行的分析促进了该领域的进一步研究和持续风险分析的必要性,从而最大限度地减少拖曳过程中发生的事故数量。
因其形状而消耗更少的能量(https://www.tudelft.nl/lr/flying-v/)。目前,航空运输约占人类活动每年产生的 360 亿吨二氧化碳的 2%(https://www.cleansky.eu/benefits),这表明需要开发一种更省油的飞机。这款 Flying V 最初是柏林工业大学学生 Justus Benad 在汉堡空客的毕业论文项目中提出的构想(https://www.tudelft.nl/lr/flying-v/)。在 Flying V 中,客舱、货舱和油箱都集成在机翼结构中。Flying V 搭载的乘客数量与空客 A350 大致相同,这是这款新飞机的基准。Flying V 比 A350 小,与可用体积相比,湿润表面积更小。结果阻力更小,从而导致相同距离所需的燃料更少。目前,Flying V 正在开发中使用传统煤油发动机,但也会研究其他推进方式,如氢或电子煤油,但这不是本研究的目的。
飞机保养良好,适合飞行。重量和平衡计算表明,事故飞行时飞机的重心在允许范围内。该机型有双重控制装置,一组控制装置用于飞行员位置,另一组控制装置用于副驾驶位置。踏板 7 机械互连。飞行员位置(左)的右踏板非常靠近副驾驶位置(右)的左踏板。踏板组件之间没有防护装置以防止不正确的踏板应用(图 Kuva 2 和 3)。此外,由于踏板的形状,飞行员可能不会通过鞋底感觉到脚的位置不正确。飞机制造商已发布非强制性服务公告,要求在踏板组件之间安装一个屏障,以防止不正确的踏板应用 8 。飞机所有者知道该公告,但因为其信息性,选择不实施它。
2020 年 6 月版《安全点》讨论了 Jabiru 发动机上飞轮连接的持续问题。经过多次协商,大家一致认为,应该定义连接螺栓的使用寿命,并要求从使用 Loctite 作为锁定介质改为使用 Nord-Lock 垫圈。LAA Engineering 希望相关支持文件能在 6 月版《轻型航空》出版之日前完成。然而,由于 Jabiru 发动机专家建议在最后一刻更改 Nord-Lock 垫圈的安装方法,以及由于许多成员在冠状病毒停飞后重返飞行而导致前所未有的工作量,该支持文件的发布被推迟了。尽管文件的发布被推迟,但目前已就以下事项达成一致:1.允许的最大螺栓使用寿命 – 100 小时。2.目视检查飞轮组件,确保每 25 小时螺栓保持在原位。3.在 50 小时时检查螺栓的扭矩。4.使用 Nord-Lock 垫圈替换 Loctite。在使用 Loctite 620 作为主要锁定方法时,发现与保持正确的螺栓张力相关的问题后,Jabiru Aircraft PTY Ltd. 发布了一份服务公告 (JSBO 12-5),要求安装 Nord-Lock 垫圈。许多 LAA 所有者都遵守了该制造商的要求。最近的报告表明,Nord-Lock 方法虽然消除了此应用中与液体螺纹锁定化合物相关的一些问题,但并未解决与铝制飞轮一起使用时张力减小的问题(由于材料蠕变);因此,在铝制飞轮的下一个盖螺栓更换点处将需要安装钢制压板。如果您拥有 Jabiru 发动机,LAA Engineering 会在这些要求的支持文件完全获得批准和发布后直接通知您。
目录(总体布局) CS-25 大型飞机 序言手册 1 — 认证规范 子部分 A — 总则 子部分 B — 飞行 子部分 C — 结构 子部分 D — 设计和建造 子部分 E — 动力装置 子部分 F — 设备 子部分 G — 操作限制和信息 子部分 H — 电气线路互连系统 子部分 J — 辅助动力装置安装 附录 A 附录 C 附录 D 附录 F 附录 H — 持续适航说明 附录 I — 自动起飞推力控制系统(ATTCS) 附录 J — 应急演示 附录 K — 交互系统和结构 附录 L 附录 M — 降低燃油箱可燃性的方法 附录 N — 燃油箱可燃性暴露 附录 O — 过冷大滴结冰条件 附录 P — 混合相和冰晶结冰包层(深对流云) 附录 Q — 批准陡峭进近着陆(SAL)能力的附加适航要求 附录 R — HIRF 环境和设备 HIRF 测试水平 附录 S — 非商业运营飞机和低载客量飞机的适航要求 手册 2 – 可接受的合规方式 (AMC) 简介 AMC – 子部分 B AMC – 子部分 C AMC – 子部分 D AMC – 子部分 E AMC – 子部分 F AMC – 子部分 G
航空公司,因为产品创新机会更多。然而,经济舱的服务通常灵活性较低,即使这些座位票被视为航空公司的“主营业务”。航空公司在特定飞机上安装的座位越多,其在同一航线上获得的利润就越高。航空公司客户通常直接与原始设备制造商 (OEM) 合作,制定飞机内部定制文件或乘客住宿布局 (LOPA)。美国联邦航空管理局 (FAA) 将 LOPA 定义为记录飞机客舱内部布局的工程图,包括座椅、出口、盥洗室和厨房等。根据航空公司选择单舱、双舱还是三舱座位配置,航空公司可以对每条航线销售的座位数量进行大量控制。LOPA 和座椅配置中的一个关键参数是座椅间距,指的是两排连续座椅之间相同两点之间的距离。
本论文 - 开放获取由 Scholarly Commons 免费开放获取。它已被 Scholarly Commons 的授权管理员接受并纳入学位论文和论文集合。有关更多信息,请联系 commons@erau.edu 。