蓝藻是唯一已知的光合原核生物,是一种古老的生物,被认为是地球氧气大气的生产者和植物叶绿体的祖先。当代蓝藻已进化为广泛多样的生物,在大多数水生和土壤生物圈中定居,它们面临着各种环境挑战以及与其他生物的竞争或共生。蓝藻表现出广泛的形态多样性(单细胞/多细胞、圆柱形/球形),许多物种分化出专门的细胞以在恶劣条件下生长和生存。它们高效地转化捕获的太阳能,将大量二氧化碳中的碳固定为巨大的生物质,以维持大部分食物链,并且它们能够耐受气流中高浓度的二氧化碳。它们还合成大量生物活性代谢物,对人类健康和工业具有重要意义。因此,由于其简单的营养需求、代谢稳健性和可塑性以及某些模型菌株的强大基因,它们被视为有前途的“低成本”细胞工厂,可用于碳中性化学品的生产。
本特刊第一版成功展示了许多最先进的研究成果。其中发表的稿件致力于介绍遗传学、基因组学和精准医学领域与遗传性心血管疾病(尤其是儿科患者)相关的发现和新兴概念。因此,我们很高兴宣布推出本特刊第二版,因为我们相信,在当今的精准医学时代,传播遗传学、基因组学领域的发现以及基因型-表型关联研究有助于开发真正针对患者的治疗方法。我们还相信,主动精准医学代表了预防性和预测性个性化医疗保健的未来。我们欢迎评论和原创文章,揭示有关遗传和基因组基础的信息,确定其机制和发病机制,并采用新的遗传学导向诊断和治疗遗传性心血管疾病。
本文提出了一种通过从文本科学语料库中提取相关实体并以结构化和有意义的方式组织它们来构建两个特定领域知识图的方法。该方法使用语义Web技术,涉及重复使用共享的基于RDF的标准词汇。theaiageresearchgroup 1收集了8,496Scientificarticlespublybethighthewewewnebetnexweew中与小麦的选择有关。我们使用alvisnlp [1]工作流程来识别指定的实体(NE)以及小麦品种和表型之间的关系。总共有88,880个提及4,318个不同命名的实体已被识别为frompubMedAbstractsantles。同样,收集的ThediaDeresearchGroup 217,058Sci-InfificarticlespublyBetebethextewnekewnevewnemtheybetebetikeentbewnextectikeentebetike from thearoryzabasedatabase [2],该[2]在手术中检查了与水稻基因组学相关的PubMed条目。我们使用hunflair ner tagger [3]在标题和文章摘要中提取NES。总共确定了351,003个提及63,591个不同的NE。双皮属性介于thatrefertogenes,遗传标记,特征,表型,分类群和品种实体中提到的标题和摘要出版物中提到的实体。在可能的情况下,这些NE与现有语义资源相关。小麦表型和特质提及与小麦特质本体论3(WTO)中的类别有关,分类单元与NCBI 4分类学类别有关。inderfaphsthecorepartofthedatamodelisbasadeonthew3cwebannotationology(OA),已与不同的词汇相辅相成,描述了Yacoubi等人中描述的文档。[4]。施工管道涉及两个主要步骤。首先,我们使用SPARQL微服务[5]来查询PubMed的Web API,并将文章的元数据(包括标题和摘要)转换为RDF 5。其次,使用Alvisnlp [1]和Hunflair [3]来提取和链接
摘要:微生物生态学是理解微生物在各种环境和健康相关过程中的组成,多样性和功能的关键领域。通过独立的方法发现候选门辐射(CPR)已引入了一种新的微生物划分,其特征在于以共生/寄生的生活方式,小细胞大小和小基因组为特征。尽管知之甚少,但CPR近年来由于它们在各种环境和临床样本中的广泛发现而引起了显着关注。与其他微生物相比,已经发现这些微生物表现出高度的遗传多样性。几项研究揭示了它们在全球生物地球化学周期中的潜在重要性及其对各种人类活动的影响。在这篇评论中,我们提供了CPR发现的系统概述。然后,我们专注于描述CPR的基因组特征如何帮助它们与不同生态壁ches中其他微生物进行互动并适应其他微生物。未来的工作应集中于发现CPR的代谢能力,并在可能的情况下隔离它们以更好地了解这些微生物。
1 捷克共和国查理大学理学院寄生虫学系 BIOCEV、Vestec、2 西布列塔尼大学、CNRS、海洋生态系统与生态联合研究中心 BEEP、IUEM、法国普卢扎讷、3 德国马尔堡马克斯普朗克陆地微生物研究所昆虫肠道微生物学和共生研究小组、4 波兰华沙大学生物学院进化生物学研究所、生物和化学研究中心、5 加拿大埃德蒙顿阿尔伯塔大学医学系传染病科、6 瑞士洛桑联邦理工学院生命科学学院;瑞士洛桑生物信息学研究所,7 生态学、系统学和进化部,巴黎萨克雷大学,法国奥赛国家科学研究院,8 捷克科学院生物中心寄生虫学研究所,捷克 Česke´ Bud ě jovice,9 俄斯特拉发大学理学院,生物学和生态学系,捷克共和国
基因组注释是一项具有挑战性的工作,其目的不仅是描述蛋白质编码和非编码基因目录,还包括参与基因表达调控、维持基因组完整性和跨代基因组传递的其他功能元件。最近的技术发展通过提供转录、翻译、染色质状态和三维构象等的大规模评估,极大地改进了注释过程。因此,可以轻松获得各种生化活动的全基因组图谱。然而,生化活性并不等同于生物功能,许多活性基因组元件实际上可能是可有可无的。基因组编辑技术可以更直接地测试生物功能,但仍然成本高昂、耗时,并且在很大程度上局限于可以在实验室中观察到的表型。在这种情况下,进化方法对于功能基因组注释来说是一项重要的资产,它可以识别在净化选择下保留现有功能的基因组区域,或在获得新生物学角色后在正向选择下保留的基因组区域。虽然进化分析无法确定精确的生物学功能,但它们可用于测试多个层面的功能,通过评估对初级 DNA 或 RNA 序列、二级 RNA 结构、转录水平或模式、转录因子结合位点等的选择压力。。。在这里,我回顾了系统基因组学方法对基因组注释的已证实和潜在贡献,重点关注如何将这些方法与分子生物学和遗传学的见解相结合,以提供功能基因组景观的全面图像。
生物医学基因组学分析插件主要用于癌症和疾病研究,以分析下一代测序 (NGS) 数据。生物医学基因组学分析插件提供各种专业工具、人类和模型物种的参考数据以及全面的模板工作流程集合,涵盖从初始数据处理和质量保证到数据分析、注释和报告的所有步骤。
。CC-BY-NC-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2025 年 2 月 5 日发布了此版本。;https://doi.org/10.1101/2025.02.05.636605 doi:bioRxiv 预印本
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2025年2月6日。 https://doi.org/10.1101/2025.02.04.636130 doi:Biorxiv Preprint
如今,基因改造基因组经常用于许多基础和应用研究领域。在许多研究中,编码或非编码区域被故意修改,以改变蛋白质序列或基因表达水平。修改基因组中的一个或多个核苷酸也会导致基因表观遗传调控的意外变化。因此,在设计具有许多突变的合成基因组时,能够预测这些突变对染色质的影响将非常有用。我们在此开发了一种深度学习方法,可以量化每个可能的单个突变对整个酿酒酵母基因组上核小体位置的影响。这种类型的注释轨道可用于设计改良的酿酒酵母基因组。我们进一步强调了该轨道如何为驱动核小体在体内位置的序列依赖机制提供新的见解。关键词——深度学习、基因组学、酿酒酵母、突变、合成生物学、核小体、DNA 基序