嵌合抗原受体T细胞疗法是治疗某些血液系统恶性肿瘤和实体瘤的开创性方法。但是,其应用受到严重毒性的限制,尤其是CRS和ICAN,极大地限制了其更广泛的应用。IL-1在增强CAR T细胞功效和推动这些有毒作用方面起着至关重要的作用。本综述系统地检查了IL-1的双重功能,强调了其在促进CAR T细胞激活和持久性的作用,同时促进CRS和ICANS发病机理。减轻IL-1驱动的毒性的策略,包括IL-1受体拮抗剂,单克隆抗体,IL-1捕获以及对IL-1产生的干扰,在不损害治疗效率的情况下减少不良影响方面有望减少不良反应。了解IL-1在CAR T细胞疗法中的复杂作用可能会导致优化的治疗策略,提高安全性并扩大临床适用性。进一步的研究对于完善IL-1靶向干预措施并增强CAR T细胞治疗的治疗潜力至关重要。doi:10.61186/ibj.4444
对于大多数药物来说,血脑屏障 (BBB) 限制了药物向大脑的输送,而血脑屏障中 claudin-5 决定着内皮旁收缩。为了绕过 BBB,我们将化合物 M01 确定为 claudin-5 相互作用的抑制剂。M01 会导致 BBB 暂时通透,具体取决于不同细胞培养模型中 3 到 48 小时内小分子的浓度。在小鼠中,大脑对荧光素的吸收在注射 M01 后的前 3 小时内达到峰值,并在 48 小时内恢复正常。与单独的细胞抑制紫杉醇相比,M01 改善了紫杉醇向小鼠大脑的输送,并减少了原位胶质母细胞瘤的生长。M01 与 claudin-5 相互作用的结果被纳入结合模型,该模型表明其芳香部分与 claudin-5 细胞外结构域和相邻跨膜片段的高度保守残基相关联。我们的结果表明了以下作用模式:M01 优先与细胞外 claudin-5 结构域结合,从而削弱粘附细胞之间的反式相互作用。由于内化和转录下调,膜状 claudin-5 水平进一步降低,使小分子能够通过细胞旁路。总之,这里引入的第一个小分子是作为药物增强剂,它特异性地使 BBB 通透足够长的时间,以允许神经药物进入大脑。
寻找痴呆症治疗的治疗,以及其他科学和社会变化,促使人们针对退化性脑疾病,轻度认知障碍以及涉及认知障碍的精神疾病的患者开发了症状治疗和疾病改良药物。对认知方面的方面(例如学习和记忆)的增强对于患有正常年龄相关的人和健康人的人来说似乎是可能的,尽管到目前为止,这些认知增强子的影响是适度的。接下来的二十年可能会更深入地了解学习,记忆和遗忘的机制,以及对分子,细胞和脑电路变化之间的关系以及认知变化的理解。,制药行业的研究工作已经有望提供更多的疾病修饰剂和推定的认知增强子,尽管将实验室发现转化为有效的人类使用干预措施时存在局限性。
提高对KRAS G12C靶向疗法的抗肿瘤反应的抽象努力从利用组合方法中受益。在这里,我们将SOS1-KRAS相互作用抑制剂BI-3406诱导的抗肿瘤反应与KRAS G12C抑制剂(KRAS G12C I)与KRAS G12C i单独或与SHP2或EGFR抑制剂合并的抗肿瘤反应。在肺癌和结直肠癌(CRC)模型中,BI-3406加上KRAS G12C I诱导抗肿瘤反应比单独使用KRAS G12C I观察到的抗肿瘤反应更强,并且与其他组合相比。这种增强的抗肿瘤反应与RAS-MAPK信号的更强,更扩展的抑制作用有关。重要的是,BI-3406加KRAS G12C I治疗延迟了CRC和肺癌模型中获得的Adagrasib耐药性的出现,并且与KRAS G12C I-抗性CRC模型中抗增殖活性的重新建立有关。我们的发现位置KRAS G12C加SOS1抑制疗法是治疗KRAS G12C肿瘤的有前途的策略,以及解决对KRAS G12C I的获得性抗性。
聚合酶链式反应 (PCR) 和环介导等温扩增 (LAMP) 等核酸扩增方法是强大的分子生物学工具,广泛应用于基础生物学研究、临床诊断、检验检疫等各个领域。为了实时或通过扩增后分析(如熔解曲线分析)检测闭管系统中的 DNA 扩增产物,需要将荧光报告子添加到反应混合物中。1 这些报告子主要分为两类:一类是通常用荧光团标记的特异性 DNA 探针,2 另一类是双链 DNA 结合染料,例如 EtBr、3 SYBR Green I (SGI)、4 EvaGreen、5 和 Sytox Green。6 基于探针的报告系统具有特异性,适用于利用不同荧光团进行多重检测。然而,合成这些双链 DNA 报告子的成本很高,并且需要大量合成。
通过将修改后的HI-C工作流程Hichip捕获的蛋白质指导的相互作用数据将研究人员链接到其控制的超级增强器。这项工作提供了一个框架来揭示致癌基因表达的复杂性。了解超级增强剂在推动致癌计划中的作用开辟了针对靶向疗法的新途径,不仅在多种骨髓瘤中,而且在其他癌症类型中。通过利用骨髓瘤细胞对PPP1R15B的依赖性用于在应激下管理蛋白质合成的依赖性,这种新型疗法有望改善患者的预后。
心脏是发育最先的重要器官,它已经调整了其大小、结构和功能,以适应各种动物的循环需求。尽管心脏发育由相对保守的转录/染色质调节器网络控制,但人类心脏如何进化出物种特异性特征以维持足够的心输出量和功能仍有待确定。在这里,我们通过比较表观基因组分析展示了在心脏发生过程中在人类中获得活性的增强子和启动子的识别。这些顺式调节元件 (CRE) 与参与心脏发育和功能的基因相关,可能解释了人类和小鼠心脏之间的物种特异性差异。支持这些发现的是,与人类心脏表型/疾病特征相关的遗传变异,特别是人类和小鼠之间的差异,
引言近年来,注册临床试验的数量呈指数增长,该试验检查了使用重组AD AD相关病毒(基于AAV)的基因疗法的使用,部分原因是其能够有效地将基因传递给靶细胞具有最小副作用的靶细胞。FDA批准AAV疗法正在稳步增加,而在2023年已经宣布了两家AAV疗法,在撰写本文时,总数达到了5个[1-3]。 这些疗法代表了市场上最昂贵的药物,最昂贵的HEMIX®的价格为每剂量约为350万美元[4]。 高价点部分是由于缺乏产生足够AAV颗粒的有效方法。 给定的治疗可能需要10 11至10 16个病毒基因组[5]。 使用历史过程,大量的细胞堆或大型搅拌罐生物反应器可能只能每次运行产生少量剂量,这在这些疗法的制造中具有严重的瓶颈[6]。 因此,迫切需要改善AAV生产的总体过程,以减轻这些治疗的成本负担。 一个改进的区域是AAV基因疗法上游生产中的三重转染步骤。FDA批准AAV疗法正在稳步增加,而在2023年已经宣布了两家AAV疗法,在撰写本文时,总数达到了5个[1-3]。这些疗法代表了市场上最昂贵的药物,最昂贵的HEMIX®的价格为每剂量约为350万美元[4]。高价点部分是由于缺乏产生足够AAV颗粒的有效方法。给定的治疗可能需要10 11至10 16个病毒基因组[5]。使用历史过程,大量的细胞堆或大型搅拌罐生物反应器可能只能每次运行产生少量剂量,这在这些疗法的制造中具有严重的瓶颈[6]。因此,迫切需要改善AAV生产的总体过程,以减轻这些治疗的成本负担。一个改进的区域是AAV基因疗法上游生产中的三重转染步骤。
1 美国国立卫生研究院国家过敏和感染性疾病研究所疫苗研究中心,马里兰州贝塞斯达 20892;2 杜克大学医学中心外科系,北卡罗来纳州达勒姆 27710;3 Moderna, Inc.,马萨诸塞州剑桥;4 贝勒医学院医学和分子病毒学与微生物学系,德克萨斯州休斯顿 77030;5 马里兰大学医学院人类病毒学研究所合作疫苗开发和全球卫生中心,马里兰州巴尔的摩 21201;6 美国国立卫生研究院国家过敏和感染性疾病研究所微生物学和感染性疾病分部,马里兰州贝塞斯达; 7 理论生物学和生物物理学,洛斯阿拉莫斯国家实验室,新墨西哥州洛斯阿拉莫斯 87545 * 通讯作者 摘要:SARS-CoV-2 的 Omicron 变体引发人们的担忧,因为它具有增强的传染性和降低抗体中和敏感性的可能性。为了评估该变体对现有疫苗的潜在风险,在两个不同的实验室中对 mRNA-1273 疫苗接种者的血清样本进行了针对 Omicron 的中和活性测试,并在假病毒测定中将其与针对 D614G 和 Beta 的中和滴度进行了比较。在使用 100 µg mRNA-1273 进行 2 次标准接种 4 周后获得的血清样本进行测定时,Omicron 对中和的敏感性比 D614G 低 49-84 倍,比 Beta 低 5.3-6.2 倍。50 µg 加强接种可提高 Omicron 中和滴度,并可显著降低有症状的疫苗突破性感染的风险。正文:在过去两年中,COVID-19 大流行产生了一波又一波令人担忧的 SARS-CoV-2 变异株 (VOC),这些变异株比早期变异株更具竞争力,可以逃避治疗性抗体,并对自然感染和疫苗接种引起的中和抗体表现出部分耐药性。最早的变异株携带单个刺突突变 D614G,为传播提供了适应性优势,并在 2020 年 5 月之前迅速取代祖先病毒成为主要的大流行变异株 (1)。重要的是,在 Moderna mRNA-1273 疫苗在冠状病毒疗效 (COVE) 第 3 期试验中显示预防有症状的 COVID-19 的有效性为 94% (2, 3) 的那段时间内,D614G 占主导地位,这使得 D614G 刺突蛋白成为主要参考标准。D614G 刺突结合和中和抗体也与 COVE 研究中的疫苗效力相关 (4),进一步加强了该刺突作为参考标准的实用性。值得注意的是,D614G 是迄今为止已知的最易中和的病毒变体之一 (5)。Alpha 变体在 2021 年初接近主导地位,很快被 Delta 变体超越,后者自 2021 年中期以来一直主导着疫情。Alpha 和 Delta 是适度的中和逃逸变体,与 D614G 相比,其对 mRNA-1273 疫苗诱导抗体的中和敏感性低 2-3 倍 (5),对 mRNA-1273 疫苗效力影响不大 (6)。其他变体引起了短暂的区域性疫情,但
细胞转录和表型对细胞转录和表型的表观遗传控制受到细胞微环境的变化的影响,但是这些微环境的机械提示如何精确影响表观遗传态来调节转录状态,这在很大程度上仍未覆盖。在这里,我们结合了基因组 - 表观基因组分析,表观基因组编辑以及表型和单细胞RNA-SEQ CRISPR筛选,以鉴定一类新的基因组增强剂,以对机械微环境做出反应。这些“机械性元素”可以在软体或僵硬的细胞外基质环境上活跃,并调节转录以影响关键细胞功能,包括凋亡,机械转导,增殖和迁移。在刚性材料上的机械性材料的表观遗传编辑将基因表达调整为在较软的材料上观察到的水平,从而重新编程了对机械微环境的细胞反应。这些编辑方法可以使机械驱动的疾病状态的精确改变。