项目描述:SARS-CoV-2 不断适应人类,导致其反复蔓延至多种动物物种,其中最严重的后果之一是北美白尾鹿体内建立了新的病毒宿主。越来越明显的是,SARS-CoV-2 的物种范围很大程度上取决于目前在人类中传播的病毒株,并且并不稳定。我们和其他人在 2020-21 年开展的工作表明,该病毒在欧洲野生动物中并未广泛传播,但阳性动物报告越来越多(包括确认的黇鹿疫情)。该项目将重点研究 SARS-CoV-2 的物种范围,包括流行病学工作(野生动物样本中的冠状病毒监测,包括新型野生动物冠状病毒)、发现的任何病毒的测序工作和细胞培养工作,以建立用于欧洲野生动物物种冠状病毒感染研究的细胞培养系统(或组织外植体系统)。我们许多物种都没有基本的实验室工具,例如用于对冠状病毒的受体向性或物种范围进行基本研究的细胞系,这项工作将寻求为常见物种和病毒建立这些工具,包括对这些物种对冠状病毒感染的反应进行基因组和转录组测序。
在本研究中,我们描述了敲除标记基因 MAR1 的建立,用于在组织培养中选择 CRISPR/Cas9 编辑的拟南芥幼苗和番茄外植体。MAR1 编码一种位于线粒体和叶绿体中并参与铁稳态的转运蛋白。它还会随机将氨基糖苷类抗生素转运到这些细胞器中,而该基因的缺陷会导致植物对这些化合物不敏感。在这里,我们展示了由 CRISPR 系统诱导的 MAR1 突变使拟南芥植物和番茄组织具有卡那霉素抗性。MAR1 在多种植物物种中都是单拷贝的,相应的蛋白质形成一个独特的系统发育进化枝,从而可以轻松识别不同植物中的 MAR1 直系同源物。我们证明,在多重方法中,通过由 MAR1 突变介导的 CRISPR/Cas9 诱导的卡那霉素抗性来选择拟南芥幼苗,观察到第二个靶基因突变的频率高于仅因存在转基因而选择的对照群体。这种所谓的共同选择以前从未在植物中发生过。该技术可用于选择经过编辑的植物,如果编辑事件很少发生,这可能特别有用。
平面微电极阵列(MEAS) - 体外或体内 - 神经元信号记录缺乏对神经网络功能和突触可变性的详细理解所需的空间分辨率和功能的信号噪声比(SNR)。为了克服这些局限性,将高度可定制的三维(3D)打印过程与薄膜技术结合使用,并使用自动对准模板辅助的电化学沉积工艺来制造基于3D打印的衡量标准,以基于STI效率或灵活的底物。显示具有设计灵活性和身体鲁棒性的设备用于记录不同体外和体内应用中的神经活动,可实现高高度比率3D微电极高达33:1。在这里,测量在3D神经元培养物,视网膜外植体和活小鼠皮层中成功记录神经活动,从而证明了3D MEA的多功能性,同时保持高质量的神经记录。可自定义的3D MEA为在常规或各种病理状况下(体外和体内)研究神经活动提供了独特的机会,并有助于药物筛查和神经调节系统的开发,这些系统可以准确地监测大型神经网络的活性。
目的:肌瘤的特征是色氨酸2,3二氧酶(TDO2)的过表达。这项研究的目的是确定体内施用TDO2抑制剂(680C91)对纤维化大小和基因表达的有效性。设计:动物和体内人类研究。设置:学术研究机构。受试者:携带载有媒介物和TDO2抑制剂的人纤维异种移植物的严重组合免疫智力小鼠。干预:每天腹膜内给药680C91或媒介物2个月,并通过纤维化外植体进行体外研究。主要结果指标:异种移植物的肿瘤体重和基因表达和使用纤维化外植体的体外机械实验。结果:化合物680C91的耐受性良好,对血液化学和体重没有影响。用680C91治疗小鼠,治疗2个月后,纤维化异种移植物的重量降低了30%,而预期的雌激素水平较低,色氨酸降解的副产品和芳基水合碳受体(AHR)的内源性配体的副产物(AHR)在Xenogrografts中。细胞色素p450家族的表达1亚家族B成员1(CYP1B1),转化生长因子B 3(TGF- B 3)(TGF- B 3),纤维蛋白(FN1),依赖细胞周期蛋白 - 依赖性激酶2(CDK2)(CDK2),E2F转录因子1(E2F1),Iltleue 8(E2F1),interleubin and cete at Intrcin and ceter articatientic and ceter arciention and Ceter arciention and Ceter arciention and Ceterincin and Il-8(IL-8(IL-8)与媒介物对照组相比,用680C91处理的小鼠的异种移植物中的mRNA较低。类似地,与媒介物对照组相比,在680C9处理的小鼠的异种移植物中,胶原蛋白,FN1,CYP1B1和SPARC的蛋白质丰度较低。对异种移植物的免疫组织化学分析表明,胶原蛋白,Ki67和E2F1的表达降低,但在用680C91处理的小鼠中切割的caspase 3表达中没有显着变化。异种移植物中的Kynurenine水平与肿瘤的重量和FN1水平直接相关。在体外研究中,对纤维植物的研究表明,色氨酸对CYP1B1,TGF- B 3,FN1,CDK2,E2F1,IL8和SPARC mRNA的显着诱导,可以被680C91和AHR Anr Antogogogonist Ch-22233191封闭。结论:结果表明,纤维化中异常色氨酸分解代谢的校正可能是一种有效的治疗方法,可以减少细胞增殖和细胞外基质积累。(fertil Steril 2024; 121:669-78。2023由美国的生殖医学。)El Resumenestádodanibleenespañolalfinal delartículo。
摘要 在本研究中,我们评估了水杨酸在减少枣椰树体外培养中真菌污染方面的作用以及水杨酸对茎尖上形成的愈伤组织再生体细胞胚的影响。最常见的真菌是链格孢菌(37%)、镰刀菌(25%)、烟曲霉(18%)和扩展青霉菌(6%)。使用马铃薯葡萄糖琼脂,水杨酸限制菌丝生长,浓度较高时则延缓菌丝生长。与对照(12.3%)相比,将浓度为 1.5 和 2.0 mM 的水杨酸添加到含有 2iP 和 NAA 的 MS 培养基中,可显著提高愈伤组织外植体的胚胎发生率,分别达到 64.9% 和 56.7%。与对照相比,水杨酸还使胚胎的幼苗发育速度提高了约 27%。水杨酸促进了根系和茎部的生长,提高了叶绿素含量。结果表明,在MS培养基中添加1.5mM水杨酸,叶片中IAA和ABA的浓度显著增加,IBA的浓度降低。关键词:初始培养,体细胞胚胎发生,小植株发育,生长调节剂含量
体外和体外农杆菌介导的毛状根转化 (HRT) 测定是植物生物技术和功能基因组学工具包的关键组成部分。在本报告中,使用 RUBY 报告基因优化了大豆的体外和体外 HRT。评估了不同的参数,包括农杆菌菌株、细菌细胞培养物的光密度 (OD 600 )、共培养基、大豆基因型、外植体年龄以及乙酰丁香酮的添加和浓度。总体而言,就毛状根和转化根(表达 RUBY )的诱导百分比而言,体外测定比体外测定更有效。尽管如此,体外技术被认为更快且方法更简单。在 cv 的 7 天大子叶上观察到了 RUBY 的最高转化。 Bert 用 R1000 接种 30 分钟,R1000 悬浮在 ¼ B5 培养基中,OD 为 600 (0.3),乙酰丁香酮含量为 150 µM。该测定的参数还通过两步体外毛状根转化获得了最高百分比的 RUBY。最后,使用基于机器学习的建模,进一步确定了两种测定的最佳方案。本研究建立了适用于大豆功能研究的高效可靠的毛状根转化方案。
Micro-Tom 芽的突变率为 100%,而 AC 芽的突变率仅为 42.9%。与 Micro-Tom 不同,AC 编辑植物未报告产生单性结实果实(Tran 等人,2021 年;Ueta 等人,2017 年)。表 1 和表 2 表明,在测试的 ET 系群体中,转化和编辑效率都存在很大差异。虽然其中一些系具有相同的亲本来源,但它们的外来构建体采用潜力水平并不相同。值得注意的是,在 ET5 和 ET8 等优良系中,使用 pANT1ox 质粒和 pEG-IAA9 的转化效率密切相关(表 1 和补充表 1)。ET5 平均每个外植体呈现 16.88 个紫色斑点,21% 的 pEG-IAA9 转化植物具有 T-DNA 插入。ET8 中的这些数字分别为 14.32 和 33.33%。这两个品系对外来基因转化反应良好,是用作遗传改造技术材料的最佳 F8 ET 品系。在这两个品系中,ET5 表现出更高的编辑效率,表现为 G0 群体中单叶和无籽植物的数量(表 1)。然而,ET8 的高生产力和存活率有利于该品系保持和转移编辑的等位基因到下一代(表 3)。对于商业基因组编辑番茄的产生,ET8 是最佳推荐选择,它提供了高产量、高转化效率和低果实开裂率等有益特性(Nguyen 等人,2023 年)。
柑橘是全球最主要的水果作物之一。实施有效可靠的育种计划对于满足日益增长的对果实产量和质量的要求以及应对快速传播的疾病的负面影响至关重要。由于柑橘生物学固有因素,例如其幼年期较长和生殖阶段复杂,有时表现出不育、自交不亲和、单性结实或多胚,传统方法既耗时又难以应用。此外,栽培或野生柑橘基因型缺乏某些理想性状。所有这些特征对于整合理想性状都具有挑战性。在这方面,基因工程技术提供了一系列替代方法,可以克服传统育种计划的困难。本综述详细概述了目前用于开发转基因柑橘的策略。我们描述了所使用的基因型品种的不同方面,包括优良品种或广泛使用的接穗和砧木。此外,我们还讨论了通过农杆菌、常规物理方法和磁转染进行的柑橘遗传转化程序的技术方面。最后,我们描述了考虑幼年和成熟组织、原生质体分离等的外植体选择。我们还讨论了改进体外再生过程的当前方案和新方法,这是柑橘遗传转化的重要瓶颈。本综述还探讨了应用于柑橘物种的替代性新兴转化策略,例如瞬时和组织局部转化。我们还讨论了新的育种技术,包括同源、内源和通过成簇的规律间隔的短回文重复序列 (CRISPR) 进行基因组编辑。其他
高粱 (Sorghum bicolor (L.) Moench) 是世界主要的农业生产谷物作物之一,在干旱地区具有特殊重要性。然而,与其他谷物不同,高粱的营养价值较低,这是由于其种子储存蛋白 (kafirins) 对蛋白酶消化具有抗性等原因造成的。提高高粱营养价值的有效方法之一是获得部分或完全抑制 kafirins 合成或改变 kafirins 氨基酸组成的突变体。利用基因组编辑可以通过在 α- 和 γ-kafirin 基因的核苷酸序列中引入突变来解决此问题。在本研究中,选择了基因组靶基序 (23 bp 序列) 以将突变引入高粱的 α- 和 γ-KAFIRIN 基因。使用在线工具 CRISPROR 和 CHOPCHOP 进行 gRNA 的设计。为 α-KAFIRIN (k1C5) 和 γ-KAFIRIN (gKAF1) 基因选择了两个最合适的靶标。在 BsaI (Eco31I) 位点将相应序列插入通用载体 pSH121。通过 DNA 测序验证克隆过程。使用 SfiI 限制位点将所得构建体亚克隆到兼容的二元载体 B479p7oUZm-LH 中。通过使用 MluI 和 SfiI 切割位点的限制分析确认二元载体的正确组装。通过电穿孔将创建的四个载体 (1C - 4C) 转移到农杆菌菌株 AGL0 中。目前,该载体系列用于使用未成熟胚外植体对高粱进行稳定转化。
帕金森病 (PD) 是一种常见且使人衰弱的神经退行性疾病,其源于多巴胺能神经元的损失,并伴有进行性运动功能障碍。神经胶质细胞衍生的神经营养因子 (GDNF) 在治疗 PD 和其他神经病方面非常有前景。在本研究中,我们应用 CRISPR/Cas9 技术开发了一种基因靶向敲入系统,用于在牛 β-酪蛋白基因位点表达人类 gdnf 基因。构建了 CRISPR/Cas9 表达质粒和 pP40-GN 载体。使用组织外植体法培养和收集牛胎儿成纤维细胞。然后将 pP40-GN 和 CRISPR/Cas9 载体电转染到牛胎儿成纤维细胞中。使用 G418 筛选抗性克隆,同时通过 PCR 分析和 PCR 产物测序鉴定目标克隆。采用耳组织阻断法成功分离培养牛胎儿成纤维细胞,将pP40-GN靶载体和CRISPR/Cas9表达载体共转染牛胎儿成纤维细胞,经7天G418筛选,共获得12个健康、分离良好的细胞克隆,其中5个发生基因打靶事件。本研究为利用基因打靶牛乳腺生物反应器生产人GDNF蛋白奠定了基础,为PD的靶向治疗提供了新的策略。