高带gap(较短的波长)材料由III-V半导体组合形成,允许在紫外线范围内进行辐射排放。通过改变铝,粘液和凝胶的比率,可以获得特定的发射波长。UV LED进一步分类为UVA,UVB和UVC LED。在UV和UVA LED附近使用Ingan在活动区域中使用Ingan,并且主要在蓝宝石底物上生长。氮化铝含量是低于365 nm的波长的首选材料。对于发射较短的紫外线波长的设备,需要具有更大铝含量的组合物。蓝宝石底物含有氮化铝或氮化铝铝铝层,也用于提高较短波长的LED质量[4]。
传记 1999 年,Ir. G. (Gertjan) Koster 教授获得博士学位,论文题目为“脉冲激光沉积人工层状复合氧化物”。同年,他移居美国,加入斯坦福大学 Geballe 先进材料实验室的 Kapitulnik-Geballe-Beasley (KGB) 小组。2007 年,他加入了特温特大学 MESA+ 纳米技术研究所的无机材料科学小组,自 2019 年 12 月起担任该研究所的正教授。2014 年,他成为温哥华 QMI-UBC 的客座教授,自 2018 年起,他担任斯洛文尼亚 Joseph Stephan 研究所先进材料系 K9 的客座教授。他的研究重点是原子工程复合(纳米)材料的结构-性能关系,特别是薄膜陶瓷氧化物。对于薄膜合成,他开发了第一个时间分辨的 RHEED 系统,在脉冲激光沉积期间以高达 100 Pa 的高压运行。这项工作促成了一家初创公司的成立,他是该公司的顾问和讲师。目前的研究包括人造材料的生长和研究、缩小尺寸(纳米级)材料的物理学、金属-绝缘体转变和原位光谱表征。应用领域包括绿色 ICT 的功能材料、神经形态计算、氧化物与 CMOS 的集成、使用 X 射线光谱或 STEM-EELS(例如电池、催化)进行氧化物界面操作研究的模型系统。其他经验:
摘要:很少的石墨烯具有低能载体,其表现为巨大的费米子,在运输和光散射实验中都表现出有趣的特性。将共振拉曼光谱的激发能降低至1.17 eV,我们将这些巨大的准粒子靶向在靠近K点的分裂带中。低激发能量削弱了可见的一些拉曼过程,并诱发了双层和三层样品中共振2D峰的子结构的更清晰的频率分离。我们遵循每个子结构强度的激发能量依赖性,并将双层石墨烯的实验测量与从头算的理论计算进行比较,我们追溯了对探测电子散布接近的电子散布和增强电子 - 唱机元件元素元素的关节效应的此类修改。关键字:石墨烯,拉曼,电子 - 声子,巨大的狄拉克费米,运输
摘要。通过将合金组成(x)从0更改为0到1,可以将Al X GA 1 -X N合金的能量带隙从〜3.4到6.1 eV进行系统调整,并且直接带隙性质在整个合金组合范围内保持在整个合金范围内,这些合金范围使Algan合金合适的材料可将光的光发射二号(LED)覆盖21 uptiover(uld)覆盖21 uptiols(U 21)。对于深紫外区(λ<300 nm)中的LED,需要高于50%的Al含量的Al含Algan合金。深紫外线LED在广泛的领域具有应用,包括显示,消毒,医疗,感应和通信。随着材料生长和电导率的最新进展,富含Al的Algan合金已成为独特的宽带间隙材料,用于开发深紫外线LED。在这篇评论文章中,富含艾尔根合金的进展如何在材料的增长和电导率方面取得了审查,导致其出现作为深色紫外线材料的出现。还将讨论深紫外线LED的挑战和前景,以提高设备的性能。
摘要:将五种不同尺寸(170、190、210、230和250 nm)的聚(苯乙烯甲基丙烯酸酯 - 丙烯酸丙烯酸)光子晶体(PCS)(PCS)应用于三种普通织物,即多酰胺,聚酯和棉花。使用扫描电子显微镜和两种UV/VIS反射分光光度计技术(集成球体和散射测量法)分析了PC涂层的织物,以评估PC的自组装以及获得的光谱和颜色特性。结果表明,织物的表面粗糙度对PC产生的颜色产生了重大影响。聚酰胺涂层的织物是唯一具有虹彩效果的样品,比聚酯和棉样品产生更加生动和鲜艳的色彩。观察到,随着入射光角的增加,随着新反射峰的形成,反射峰的高营养偏移发生。此外,用照明剂的光源在聚酰胺样品上进行了颜色行为模拟。照明剂A模拟显示出比用D50照明的模拟颜色更绿色和黄色的结构色。使用散射法对聚酯和棉花样品进行分析以检查虹彩是否在眼检查后看不见,然后证明存在于这些样品中。这项工作可以更好地理解结构颜色及其虹彩如何受到纺织底物形态和纤维类型的影响。
摘要:使用涉及海水中硫酸盐离子激素的增强降解方法(EDM)研究了降解过程中聚合物(PP,HDPE,LDPE,PLA和PS)中聚合物(PP,HDPE,LDPE,PLA和PS)中紫外光吸收器(UVA:UV-326)的改变的改变。EDM用于均质降解包含UVA的整个聚合物样品。含有5-PHR(PHR:每百个树脂)UVA膜的PP和PS样品进行了快速美白,其特征是形成了许多凹槽或碎颗粒。值得注意的是,PS中的UVA损耗率具有较高的玻璃过渡温度(TG)的较慢。除PS外,晶体聚合物的行为与降解过程中UVA损耗率的变化相似。在EDM降解期间观察到的初始损失率的显着增加是由于微塑性化引起的。PS发生了类似的微塑料率。但是,UVA和PS之间的分子间相互作用并没有导致明显的损失率增加,如其他聚合物中所观察到的。重要的是,在EDM降解过程中,UVA的化学结构保持不变。这些发现表明,UVA损失的主要原因是从聚合物基质中浸出的。
如需查看我们全球办事处的完整列表,请访问 www.excelitas.com/locations © 2024 Excelitas Canada Inc. OmniCure®、StepCure® 和 Intelli-Lamp® 是注册商标,Intelli-Tap™ 是 Excelitas Canada Inc. 的商标。Excelitas 徽标和设计是 Excelitas Technologies Corp. 的注册商标。所有其他商标均为其各自所有者的财产,Excelitas Technologies Corp.、其关联公司或子公司或其任何产品均未获得任何机构的认可、赞助或以任何方式与本文提及其商标和/或徽标的机构有关联。Excelitas Canada Inc. 保留随时更改本文件的权利,恕不另行通知,并且不对编辑、图片或印刷错误承担责任。L-OM_BR-OmniCure S-1500 Pro Brochure_2024.01
摘要:带有尖晶石LI 4 Ti 5 O 12(LTO)电极的锂离子固态电池具有显着的优势,例如稳定性,长寿和良好的乘法性能。在这项工作中,通过大气等离子体喷涂方法获得LTO电极,并通过在LTO电极上的原位紫外线(UV)固化制备复合固体电解质。使用柔软的组合策略设计了复合固体电解质,并将电解质制备成聚(乙烯基氟化物-CO-HEXAFRUOROPYLENE)(PVDF-HFP)的复合材料(PVDF-HFP)柔性结构和高导不导率Li 1.3 Al 0.3 Al 0.3 Ti 1.7(PO 4)(PO 4)3(LATP)硬颗粒。复合电解质在30℃下表现出高达0.35 ms cm -1的良好离子电导率,而在4.0 V上方的电化学窗口显示出。原位和原位电解质被组装到LTO // Electrolete // Li Solid-State电池中,以研究其对电池电化学性能的影响。结果,组装的Li 4 Ti 5 O 12 //原位电解质// Li电池的性能速度很高,其容量保留率为90%,在300个周期后,在0.2 mA/cm 2时为0.2 mA/cm 2。这项工作为制造新型高级固态电解质和电极的新方法提供了一种新方法,用于应用固态电池。
瀑布是一个严重的公共卫生问题,65岁以上的人是跌倒最严重的病变之一。也有一个事实,即瀑布会对老人的心态产生负面影响,从而导致自尊心低下,因为它变得依赖一个不断监视他的人,除了不断去医院旅行之外。一种自然而实用的方法,用于脆弱的E-SASO运动人员,并需要立即跌倒。因此,这项工作提出并评估计算视觉模型,以改善有跌倒风险的个人的监测和安全性,例如老年人或流动性降低的人。该模型包括一个生成神经网络,时空卷积块,光流计算,跟踪感兴趣区域的技术以及用于计算异常分数的饲料强制神经网络。分析模型与红外记录一起工作也很重要,因为在弱光环境中也可能发生跌倒。分析包括以不同组合应用各种图像处理过滤器和技术,以寻求找到满足高灵敏度和高F1分数的模型。使用RGB摄像机的最终神经网络模型达到99.21%的延迟性和0.98 F1得分,而使用红外摄像机的模型达到100%灵敏度和0.98的F1得分,超过了其他文献建议。异源评分技术已被证明具有一种很好的适应能力,即使在新视频场景中曝光,也能够识别跌倒,也是在实际情况下使用系统的理想选择。
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。