摘要 :脑内神经递质多巴胺 (DA) 的含量异常与帕金森病、阿尔兹海 默症等神经系统类疾病的发生发展密切相关,精准、实时监测其脑 内含量可作为临床诊疗的重要参考。电化学分析法具备成本低、响 应快、可实现体内实时监测等优势。然而,脑内复杂环境中蛋白吸 附、多物质共存等因素会极大干扰多巴胺的定量分析,这对电极的 灵敏度、选择性和稳定性提出了极高的要求。因此,研发出满足要 求的电极材料是实现多巴胺电化学检测临床应用的关键。掺硼金刚 石 (BDD) 电极生物相容性好、背景电流低、电势窗口宽、抗吸附性 强、化学稳定性高,相较于易团聚、易脱落而失效的金属纳米颗粒 或电阻较大的高分子材料, BDD 电极更具潜力解决上述多巴胺检测 的难点问题。然而, BDD 电极虽能有效抵御蛋白吸附,但在多巴胺 的选择性检测方面存在不足: BDD 电极表面缺乏能够高灵敏度、高 选择性检测多巴胺分子的官能团。因此,在保持 BDD 本征特性的基 础上,系统研究 BDD 电极表面改性与功能化修饰对电化学检测多巴 胺的选择性、灵敏度和稳定性的影响机理,是 BDD 电极实现临床应 用的关键。基于此,本论文从 BDD 膜电极的功能性改性与修饰到 BDD 微电极体内检测,系统研究了 BDD 膜电极在多巴胺电化学检测 中的作用机理,揭示了 BDD 电极界面性质对多巴胺分子氧化过程的 影响规律,所得具体结论如下: (1) 针对 BDD 电化学活性较低的问题,采用高温溶碳刻蚀和滴 涂修饰方法,在 BDD 电极表面刻蚀纳米孔洞并修饰 Nafion 选择性透 过膜( NAF ),制备了 Nafion 修饰的多孔 BDD 复合电极 NAF/pBDD ; 研究了该复合电极对多巴胺的电化学检测机理,揭示了 NAF/pBDD 复合电极比 BDD 电极具有更多活性位点的原因,同时探究了 Nafion 膜对多巴胺和抗坏血酸的作用机制;该电极针对多巴胺的检测限 (42 nM) 和检测线性范围 (0.1 ~ 110 μM) 相较于 BDD 均得到了有效改善。 (2) 针对 BDD 电极对多巴胺选择性较弱的问题,在 pBDD 表面 修饰活性更高的纳米炭黑颗粒 (CB) ,制备了 NAF-CB/pBDD 复合电 极,研究了炭黑颗粒的加入对主要干扰物抗坏血酸 (AA) 电化学响应 的影响机理,揭示了该电极在高浓度、多干扰物并存环境下对多巴 胺的选择性检测机制。结果表明,该电极可有效将干扰物抗坏血酸 的氧化电位提前以减少对多巴胺信号的干扰,检测限 (54 nM) 和检测
产妇接触环境有毒物质是其后代神经行为健康的重要危险因素。在我们的研究中,我们研究了母体暴露于氯烷基醚磺酸(Cl- PFESA,商业名称:F-53B)对Zebrafif Sh的后代幼虫的潜在机制的影响。随后将暴露于Cl-Pfesas(0、0.2、2、20和200μg/l)的成年斑马鱼培养了5天。观察到斑马鱼胚胎中较高浓度的Cl-Pfesas,以及在后代幼虫中降低的游泳速度和距离的降低。分子对接分析表明,CL-PFESA可以与脑衍生的神经性因子(BDNF),蛋白激酶C,Alpha,(PKCα),Ca 2+ -ATPase-atPase和Na,Na-na-aTPase形成氢键。分子和生化研究证明CL-PFESA会诱导伴有副作用功能障碍,眼发育缺陷和Ca 2+稳态破坏。一起,我们的结果表明,孕产妇暴露于Cl-Pfesas会导致Ca 2+同源性,多巴胺能功能障碍和眼睛发育缺陷的破坏介导的后代的行为改变。
Brexprazole是一种来自多巴胺D 2 /D 3受体部分激动剂的新抗精神病药。它代表了第二代抗精神病药的发展,这是精神分裂症的药理学治疗选择的重要补充本文的目的是通过Brexprazole的情况进行说明,这是Brexprazole的案例,在新抗精神病药的药理学特性中的进步如何转化为精神分裂症的改进结果,不仅是精神分裂症的改良,而且还构成了典型的征兆,并且是症状的征兆。Brexprazole的激活与D 2 /D 3受体的阻塞比在Aripiprazole和Cariprazine的比率低,这可能会转化为Akathisia的较低风险。Brexprazole具有更强的抗组胺药活性,这可能与更强的Seda具有效应,较低的AKATHISIA,过度搅动和失眠的风险有关。brexprazole符合抗精神病药疗效的传统要求,即与安慰剂相比,在短期研究中,它带来了更大的精神分裂症症状,并防止长期随访中的精神分裂症复发。发现最高的抗精神病药物为最高的注册剂量(4 mg/天)。除了减少局部性症状外,Brexprazole治疗还导致负面和抑郁症状的减少以及焦虑。这也对患者的社会和个人功能和生活质量产生积极影响。该药物的这一作用符合幼虫及其家人对有效治疗的期望。它不仅应减少症状,而且还应使健康恢复,即,除了最佳健康和心理健康的感觉外,还可以维持适当的社会关系。
多种证据表明,多巴胺信号传导改变可能与神经精神疾病和常见行为特征有关。我们在此批判性地回顾了过去 40 多年收集的证据,这些证据支持多巴胺功能障碍在注意力缺陷多动障碍 (ADHD) 中的作用。我们概括了中枢神经系统中多巴胺能信号传导的基本组成部分,重点关注参与单胺能功能的核心酶、转运蛋白和受体,特别是在纹状体和皮质区域。我们总结了关键的人类大脑成像和遗传学研究,报告了多巴胺能神经传递与行为特征之间的关联,重点是 ADHD。我们还在动物模型和单基因、代谢和神经系统疾病的背景下考虑 ADHD,这些疾病已确定多巴胺能系统功能障碍。通过这种方式检查证据,我们得出结论,有证据表明多巴胺参与其中,但多巴胺能低下状态本身是 ADHD 的关键组成部分的证据有限。我们提出了一条前进的道路,以增加我们对多巴胺信号在人类行为特征和障碍中的理解,特别应关注其在临床亚群中、在大脑发育过程中的作用以及它如何与其他神经递质系统相互作用。
摘要:多巴胺是参与生理过程的关键神经递质,例如运动控制,动机,奖励,认知功能以及母体和生殖行为。因此,多巴胺能系统的功能障碍与许多人类疾病有关。多巴胺通过与强迫行为,奖励和习惯形成有关的不同电路,也代表了药物使用障碍的关键参与者以及导致成瘾的机制的形成和永久性。在这里,我们不仅将多巴胺作为神经传递的模型,而且是能够修改神经元结构的神经调节的模型。滥用甲基苯丙胺,可卡因和酒精等物质及其随着时间的流逝会导致神经元活动的变化。这些修饰导致突触可塑性,并最终导致形态和功能变化,从适应性神经调节和神经变性中的结束开始。
摘要通过使用十二烷基苯甲酸钠(SDBS)和十二烷基硫酸钠(SDS)作为碳糊电电子(CPES)的表面修饰剂(CPES),开发了一种选择性和敏感的方法,用于同时使用十二烷基苯甲酸盐(SDBS)和十二烷基硫酸钠(SDS)来确定多巴胺和尿酸的选择性和敏感方法。在较低的SDS和SDB浓度下,由于表面活性剂与CPE的石蜡的疏水链相互作用,它们在CPE表面形成负电荷的单层。在磷酸盐缓冲溶液中,SDS的表面活性剂的优化浓度为2 mm,SDB的SDB为1 mM(分别为0.1 m,pH 7和pH 6)。与普通CPE相比,用SD(CPE-SD)和用SDB(CPE-SDB)修饰的CPE显示出在0.230 V和0.230 V和尿酸(UA)的电化学反应改善,并在0.345 V时在0.345 V时,由于静电相互作用,由于静电相互作用,在静电相互作用且表面呈稳定的分析和表面上的静电量和表面均可分配为SD和SDESS和SDED的均匀分析。在最佳实验条件下,设计的电极对DA的线性响应从0.53μm到31.6μm,UA从5.95μm到118.97μm。在CPE-SD中发现DA和UA的检测极限为0.26和1.10 µm,而CPE-SDBS的检测限为0.22和0.22和0.38 µm。CPE-SDB和CPE-SD显示出良好的可重复性,可重复性,稳定性和高选择性,可确定血清血清样品中DA和UA。关键字:多巴胺,尿酸,碳糊电极,十二烷基硫酸钠,十二烷基苯甲酸钠
摘要 反复接触滥用药物会导致中脑边缘多巴胺系统中 cAMP 信号的上调,这种分子适应被认为与药物依赖的发展密切相关。由 cAMP 直接激活的交换蛋白 (Epac2) 是一种在大脑中大量表达的主要 cAMP 效应物。然而,Epac2 是否有助于可卡因强化仍不清楚。在这里,我们报告说,中脑边缘多巴胺系统中的 Epac2 通过增强多巴胺释放来促进可卡因强化。在固定比率和渐进比率强化方案下以及在广泛的可卡因剂量范围内,从中脑多巴胺神经元中条件性敲除 Epac2 (Epac2-cKO) 和选择性 Epac2 抑制剂 ESI-05 降低了小鼠的可卡因自我给药。此外,Epac2-cKO 导致诱发的多巴胺释放减少,而 Epac2 激动剂在体外强烈增强了伏隔核中的多巴胺释放。这种机制是 Epac2 破坏行为效应的核心,因为通过脱氯氯氮平 (DCZ) 诱导的 Gs-DREADD 激活对腹侧被盖区 (VTA) 多巴胺神经元进行化学遗传刺激会增加多巴胺释放并逆转 Epac2-cKO 小鼠的可卡因自我给药障碍。相反,用 Gi-DREADD 对 VTA 多巴胺神经元进行化学遗传抑制会减少野生型小鼠的多巴胺释放和可卡因自我给药。因此,Epac2 介导的多巴胺释放增强可能代表一种有助于可卡因强化的新型强大机制。
摘要帕金森氏病(PD)的特征是黑质(SNC)多巴胺(DA)神经元的死亡,但在其死亡之前的病理生理机制仍然未知。PD中DA神经元的活性可能会改变,但我们对活性的慢性变化是否可能导致退化。为了解决这个问题,我们开发了一种化学遗传(Dreadd)小鼠模型,以长期增加DA神经元的活性,并使用离体电生理学证实了这种增加。DA神经元的慢性过度激活导致在光周期期间运动活性的延长,并在黑暗循环期间减少,这与DA释放和昼夜节律干扰的慢性变化一致。我们还观察到了SNC投影的早期优先退化,从而概括了SNC轴突选择性脆弱性的PD标志和腹侧段面积轴突的比较弹性。接下来是中脑DA神经元的最终丧失。连续的DREADD激活导致基线钙水平持续增加,这支持了在神经变性过程中钙增加的重要作用。最后,来自研究中脑DA神经元和纹状体靶标的无多小鼠的空间转录组学,以及与人类患者样品的交叉验证,提供了对多动症诱导的毒性和PD的潜在机制的见解。因此,我们的结果揭示了SNC DA神经元对增加神经活性的优先脆弱性,并支持增加神经活动在PD驱动变性中的潜在作用。引言帕金森氏病(PD),尼格拉(Nigra)pars commanta(SNC)多巴胺(DA)神经元的丧失导致基底神经节中电路动态的严重破坏。多巴胺损失的补偿涉及在电路中存活的SNC神经元和其他下游神经元的活性变化。的确,在大鼠骨纹状体途径的部分病变之后,存活的SNC DA神经元是多动(1),释放额外的多巴胺(2-5),并减少了多巴胺再摄取(2)。DA神经元的巨大丧失(1、6、7),线粒体复合物I活性的完全丧失以及线粒体PD蛋白PINK1(9)的损失也会导致爆发的爆发增加(10,11)。因此,在广泛的损失或压力的情况下,DA神经元易于改变活性,这可能与电路水平的变化有关。例如,灵长类动物模型的证据表明,在PD中,丘脑下核向SNC发送了谷氨酸能投射的核(12)。虽然系统级变化可能是补偿性的,并且部分恢复了多巴胺水平和整体运动功能,但它们也可能带来不利的后果。此外,包括α-突触核蛋白,LRRK2,Pink1和Parkin在内的关键PD疾病蛋白可以影响神经活动水平(13-18),进一步支持了神经活动变化也可能有助于疾病病理生理学的观念。健康的SNC多巴胺神经元由于其起搏活动,有效的Ca 2+泵送,无髓髓纤维或髓鞘不良的纤维(19、20)和大轴突轴(21),因此具有巨大的能量需求。这一巨大的能量要求可能解释了其内在脆弱性,包括线粒体损伤,包括复杂的I破坏(8、22、23)以及线粒体动力学的障碍(24)和周转率(25)。据估计,线粒体在SNC DA神经元中消耗的氧的一半致力于支持神经元释放和发射器释放(26)。因此,与疾病相关的应激结合在一起,即使是轻微多动症的代谢影响可能会触发或加速SNC DA神经元的变性。支持该假设,抑制STN的兴奋性输入可保护SNC DA神经元从6- OHDA和MPTP毒性(27,28)。