启动子区域的核苷酸变化通常会导致表达异常,导致血脂异常和动脉粥样硬化等并发症,最终导致冠心病 (CHD)。在 T2DM 患者中,TNF-α (308G>A) 多态性与 CHD 之间存在显著 (P < 0.05) 关系 (Rezuan, et al., 2021), (Jamil, et al., 2015)。一项荟萃分析显示,TNF-α 启动子 (-308G>A) 多态性对白种人 CHD 的影响强度为 1.5 倍 (Zhang, et al., 2011)。另一项在意大利人中进行的研究 (Sbarsi, et al., 2007) 表明,糖尿病患者中 TNF-α (-308G>A) 多态性的发病率明显较高。在墨西哥人群中也发现了同样的情况(Perez-Luque 等,2012),他们在三组人群(有和没有糖尿病家族史的健康人群和糖尿病患者)中检查了 TNF-α − 308G/A 启动子基因的等位基因频率,以及它与胰岛素抵抗、瘦素和 TNF-α 水平的关系。最后,ΤΝNF-α 238G/A 多态性可能是糖尿病前期发展和进展的风险因素(Dutta 等,2013)。
尽管肾脏移植方面取得了显着进步,但免疫抑制疗法对于防止移植排斥仍然至关重要。他克莫司(TAC)在这方面起关键作用。在1984年发现,TAC抑制了T淋巴细胞的激活,通过破坏与早期T细胞激活有关的关键基因的转录来防止急性排斥。但是,TAC的使用并非没有挑战。该药物表现出严重的副作用,狭窄的治疗指数和不可预测的药代动力学。治疗药物监测(TDM)必须在治疗范围内保持TAC血液浓度。本文献综述深入研究了影响TAC代谢的遗传方面,重点是CYP3A5,CYP3A4和ABCB1基因中的关键多态性。CYP3A5的遗传变异,这是TAC代谢的主要酶,影响酶活性,需要实现个性化给药策略。 CYP3A4多态性,尤其是CYP3A4*22,证明了与TAC清除和剂量要求改变的关联。 ABCB1基因编码了TAC药代动力学的另一位p-糖蛋白,也表现出影响药物吸收和分布的多态性。 ABCB1 3435C> t变体,显示出对他克莫司生物利用度的潜在影响。 了解这些遗传变异有助于开发个性化剂量方案。 研究表明,基于CYP3A5基因型的定制TAC剂量显着提高了达到治疗浓度的患者的比例。 。CYP3A5的遗传变异,这是TAC代谢的主要酶,影响酶活性,需要实现个性化给药策略。CYP3A4多态性,尤其是CYP3A4*22,证明了与TAC清除和剂量要求改变的关联。ABCB1基因编码了TAC药代动力学的另一位p-糖蛋白,也表现出影响药物吸收和分布的多态性。ABCB1 3435C> t变体,显示出对他克莫司生物利用度的潜在影响。了解这些遗传变异有助于开发个性化剂量方案。研究表明,基于CYP3A5基因型的定制TAC剂量显着提高了达到治疗浓度的患者的比例。。此外,将遗传信息(尤其是CYP3A4*22)纳入给药策略增加了TAC治疗的精度,从而降低了不良影响的风险。
此外,我开发了一种新工具,用于测试热重组位置的交叉分布,我们称之为种子键入种子类型)。此方法可以实现交叉频率测量和单个重组事件位置的精确映射。使用这种方法,我确定了一个非常多态性的CHP间隔,其中三个热重组位置:ARO,Coco和Nala。我们的结果表明,热重组位置的中心实际上没有单个核苷酸的多态性(英语SNP),但是SNP在其直接接近度中的存在会刺激给定位置的交叉活动。此外,如果研究染色体间隔周围的结构变化如果不直接覆盖热重组位置,则不会影响重组的频率。使用A. thalaian线在可可中的自然缺失或使用CRSIPR/CAS9产生人工删除后,我们确认拟南芥在位置位置的热重组位置之间没有竞争。
目的:本研究旨在评估与免疫反应相关的基因之间的关联 - STAT4,IL8RA和CCR7多态性与肺癌风险之间的关联。方法:使用MassArray平台对STAT4,IL8RA和CCR7的七个多态性和350例对照进行了基因分型。结果:STAT4 RS1400656-G和RS7574865-T等位基因可能会降低对肺癌的易感性(P RS1400656 = 0.020; P RS7574865 = 0.014);而IL8RA RS1008562-C和CCR7 RS3136685-T等位基因可能会增加患疾病的风险(P rs1008562 <0.001; p rs3136685 = 0.018)。STAT4 RS1400656-GA和RS7574865-GT基因型被确定为针对肺癌风险的保护性基因型(P RS1400656 = 0.048; P RS7574865 = 0.042)。然而,IL8RA RS1008562-CG/GG和CCR7 RS3136685-TT基因型与疾病风险升高显着相关(P rs1008562 <0.0001; p rs31366685 = 0.020)。遗传模型分析表明,STAT4 RS1400656和RS7574865与在显性和日志辅助模型下的疾病风险下降有关(RS1400656:P主导= 0.014,P log-Addivity,P log-addivity = 0.016; rs7574865:rs7574865:p统治= 0.0113)。相比之下,IL8RA RS1008562在所有三种模型下与肺癌风险升高(P显地<0.0001,p隐性= 0.011,p log-addive <0.0001)都具有较强的相关性。此外,CCR7 RS3136685与隐性和对数添加模型下的疾病风险增加相关(P隐性= 0.007,P log-addive = 0.019); CCR7 RS17708087也被确定为主要模型中的危险因素(P = 0.038)。结论:这些结果扩大了有关STAT4,IL8RA和CCR7多态性和肺癌风险的知识范围。关键字:转录4,STAT4的肺癌,信号透射剂和激活剂,白介素8受体α,IL8RA,趋化因子(C-C基序)受体7,CCR7,CCR7,单核苷酸多态性,SNPS
1. 引言 为了更详细地了解基因多态性及其意义,有必要定义叶酸-蛋氨酸循环和甲基化的概念。叶酸-蛋氨酸循环是确保体内甲基化所必需的。甲基化是向物质中添加甲基以激活它们。甲基化是一个非常重要的过程,它影响基因表达(活性)、解毒-激活肝脏解毒的II期、维持能量代谢、提供膜结构、髓鞘、乙酰胆碱代谢、免疫调节、神经递质代谢-合成多巴胺、血清素、去甲肾上腺素、乙酰胆碱;褪黑激素的合成、衰老(“表观遗传时钟”-DNA甲基化越少,衰老越快),确保各种基因的开启和关闭、DNA分子的复制(加倍)、DNA修复和重组、蛋白质生物合成、DNA分子的保护和恢复。甲基化是清除体内毒素的关键方法。完善的甲基化过程使毒素和重金属更容易被清除,从而降低患癌症的风险。与异常甲基化有关的一些疾病包括:心血管疾病、骨质疏松症、糖尿病、行为障碍、早产、宫颈癌、肠癌和肺癌。甲基化还负责通过控制同型半胱氨酸水平来调节炎症过程。在甲基化障碍的情况下,血液中的同型半胱氨酸水平会升高,从而增加患心血管疾病的风险。甲基化是将甲基基团附着到某些分子上以激活它们的过程。首先,一种非常重要的氨基酸——蛋氨酸进入人体时会
法医DNA分析的领域多年来经历了显着的进步,例如DNA指纹的出现,聚合酶链反应引入了提高敏感性的聚合酶链反应,将基于短tandem重复序列的遗传标记系统的转移以及国家DNA数据库的实施。现在,随着密集的单核苷酸多态性(SNP)测试的出现,取证领域有望为另一场革命。SNP测试具有显着增强法医病例的来源归因的潜力,尤其是涉及低量或低质量样品的源。与遗传谱系和亲属分析相结合时,它可以解决无数的活性病例以及冷病例和未识别的人类遗体的病例,这受到现有法医能力的局限性,而这些法医能力无法产生可与DNA产生可行的调查铅。法医遗传谱系与全基因组测序结合的领域可以使亲戚与少数及以后的亲属联系在一起。通过利用志愿者的数据库来定位附近和遥远的亲戚,遗传家谱可以有效地缩小与犯罪现场证据相关的候选人,或帮助确定人类遗体的身份。随着DNA测序成本的降低和提高检测的敏感性,法医遗传遗传学正在扩大其能力,从而从广泛的生物学证据中产生研究。收到:2024年3月12日
宫内和早期产后营养不良导致身体,脾脏和胸腺的显着和持久的体重减轻。断奶母亲后代的平均体重为25 10 g,而对照组的平均体重为75和20 g。断奶时,营养不良后代的平均脾脏重量为0.19 a 0.05 g,其对照的平均体重为0.4和0.13 g。在脾脏重量的情况下,但没有营养不良的后代的胸腺重量在大约70天后抓住了控制。重新加入长达4个月后,营养不良的胸腺重量仍然显着(p <0.01),小于相应的重量匹配对照。在断奶营养不良的后代的脾脏和胸腺中的原发性和二颗斑块形成细胞(PFC)几乎没有检测到其对照组的脾脏,意味着50 x LO3 LO3 lo3 lo3 lo3初级PFC和70 x LO3二次PFC的近似值。对照胸腺中的相关值为20 x LO2主要PFC和8 x LO2次级PFC。在向后代进行了4个月的重新加入后,其脾脏中的主要和继发性PFC增加到了其对照中的水平约一半,而胸腺中的PFC仍几乎无法检测到。另一方面,在断奶营养不良的后代的脾脏中,平均原发性和次级玫瑰花塞形成细胞(RFC)在对照组中的8&90 x LO3中小于1 x lo3(p <0.001)。在thymus中也是平均初级和次级RFC也小于1 x
与父母相比具有优越的遗传特征[3]。在这项研究中,开发了一项杂交计划,以越过三只不同的当地鸡开发新的印尼鸡种。Merawang和Murung Panggang鸡被用作雄性线,而Kampung Unggul Balitbangtan(Kub)鸡被用作女性线。该程序产生了第二份申请(F2),我们将其称为F2本地交叉鸡。Merawang鸡肉均为鸡蛋和肉饲养,起源于曼卡贝利通省的Merawang区[4]。来自南卡利曼丹省的Murung Panggang鸡肉主要用于肉类,可以在5个月内达到4公斤[5]。Kub鸡肉已经繁殖了超过六代,并以其高鸡蛋(EP)和低育种行为而闻名[6]。对每种鸡的生殖概况的评估对于提高遗传质量至关重要。在鸡肉育种中,选择通常依赖于经济上有价值的特征,包括第一次卵,生产量,体重,长度和宽度时体重(BW)。随着科学进展,已经提出了分子选择作为改善这些特征的另一种方法。分子选择是一种用于在编码特定特征的特定基因上使用DNA标记来识别和选择牲畜中理想的遗传特征的技术[7]。因此,将现代技术与传统知识相结合可以潜在地提高印尼当地鸡的生产率。催乳素(PRL)被广泛称为候选基因,用于与生殖性状有关。在鸡中,PRL基因位于2号染色体上,由四个内含子和五个外显子组成。它是转化生长因子 - β亚家族的成员,在生理功能中起着重要作用[8]。此外,该基因编码PRL激素,该激素是由垂体前腺产生的,并在脊椎动物之间发挥各种生物学作用[9]。这种激素直接影响下丘脑 - 垂体 - 基达轴,这是控制EP的主要激素途径。在大多数情况下,PRL水平的增加会导致卵巢回归和触发孵化行为[8,9]。PRL基因中的多态性已在各种鸡肉中报道,包括Qingyuan Partridge,隐性白色,白色Leghorn,Yangshan,Taihe Silkies,White Rock,Nongdahe,Hubbard F15,Lohmann,Lohmann,Lohmann,Cobb 500和Avian 48鸡[9-11] [9-11]。此外,已经对印尼各种当地鸡肉(包括巴布亚人和IPB-D1鸡)进行了研究[12,13]。Li等人的先前研究。[9],Mohamed等。[11]和Rohmah等。[13]鉴定出PRL基因中与各种特征显着相关的单核苷酸多态性(SNP),包括在第一个卵子下卵,EP和死亡率。尚未进行有关PRL基因多态性及其与印尼当地交叉鸡的生殖特征的关联的研究。因此,本研究是为了提供
结直肠癌(CRC)约占所有新诊断的癌症病例的11%,并且是全球第三大癌症,导致与癌症相关的死亡人数第二高(1)。CRC的发病机理包括无数的因素,这些因素有助于复杂的遗传和表观遗传机制,最终导致正常结肠粘膜转化为恶性组织(2)。不足的DNA修复能力与基因组不稳定性和对癌症的敏感性增强密切相关(3-5)。此外,新兴的证据强调了DNA损伤反应,微卫星不稳定性状态与线粒体拷贝数和其他途径之间的遗传变异之间的强相关性,这是CRC患者的至关重要的决定因素(6-11)。