多旋翼无人机(UAV)已转变为能够通过未知环境导航的智能代理。这种演变强调了它们自主操作并适应多样化和挑战的场景的能力。无与伦比的研究经常面临一个重大问题:缺乏真实和多样化的培训数据。为了解决这个问题,我们介绍了U2USIM,这是一个远程仿真平台,旨在在UAV-TO-TO-UAV(U2U)合作学习和体现AI研究中进行现实的合成数据生成,性能评估和可视化。模拟提供了一种有效的解决方案,可以实现实时可容纳能力,高可操作性,高分辨率图像和成本效益[8]。以前的仿真平台,例如Airsimw [2],Xtdrone [7],Smrtswarm [1],在镜像现实世界环境中受到限制。受Ros-Gazebo-Px4工具链的启发,以视觉大满贯和导航而闻名,我们提出了U2USIM平台。此工具利用UE [5],Airsim [6]和ROS [4]来结构具有动态和现实的虚拟环境的实时交互式平台。
• RSS Pioneers 2024 (Out of 202 candidates, only 30 researchers were selected) • 1st prize again in HILTI SLAM Challenge'24 in IEEE ICRA • 20+ IROS, ICRA, RA-L, RSS, IJRR papers during grad school (12 first-author papers) • 2022 IEEE RA-L Best Paper Award (among 1,100 papers, only 5 papers are selected) • 1st prize在63个国际团队中,在IEEE ICRA中的Hilti Slam挑战23中•CES'23创新奖通过Tech。有关移动机器人大满贯的转移(与Hills Robotics合作)•Univ的访问学者。Bonn, Germany (advisor: Prof. Cyrill Stachniss) • In 2022, serve as a SLAM part outside expert, CTO division of LG Electronics, Republic of Korea • 2nd cash prize in HILTI SLAM Challenge'22 in IEEE ICRA (in total, 4th place) • Research intern of vision/deep learning team of NAVER LABS, Republic of Korea • 1st prize in Hitachi-LG Data Storage LiDAR application competition,大韩民国
2 Public Works Department, Faculty of Engineering, Cairo University, Giza12613, Egypt amr-m.eldemiry@polyu.edu.hk , muhammad.muddassir@polyu.edu.hk , tarek.zayed@polyu.edu.hk Abstract – In this paper, we propose a ground mobile robot that can perform both surface mapping and subsurface mapping using三维激光雷达同时定位和映射系统(3D激光雷达大满贯系统)和地面穿透雷达(GPR)。机器人由配备3D激光雷达传感器的移动平台和安装在固定机箱上的GPR天线组成。机器人可以自主浏览环境并从表面和地下收集数据。表面映射是通过使用±3 cm范围精度的3D激光镜传感器来观察地形的点云,然后对其进行处理以生成3D表面图。地下映射是通过使用GPR天线将电磁脉冲发射到土壤中并接收反射的,然后对其进行处理以生成3D地下图。然后,我们可以融合表面和地下图以获得地形的全面表示。我们在现实世界中(例如桥梁)演示了机器人的性能。我们表明,我们的机器人可以在表面映射任务和GPR数据采集中实现高精度和效率。
摘要 - 近年来,在所谓的可认证感知方法的发展中取得了显着进步,这些方法利用半闪烁,凸出放松,以找到对机器人技术中的感知问题的全球最佳选择。然而,其中许多放松依赖于简化促进问题制定的假设,例如各向同性测量噪声分布。在本文中,我们探讨了矩阵加权(各向异性)状态估计问题的半决赛松弛的紧密性,并揭示了其中潜伏在其中的局限性:基质加权因素会导致凸的松弛因失去紧密度。特别是我们表明,矩阵权重的本地化问题的半决赛松弛仅对于低噪声水平可能很紧。为了更好地理解这个问题,我们引入了状态估计的后验不确定性与通过凸面重新获得的证书矩阵之间的理论联系。考虑到这种联系,我们从经验上探讨了导致这种损失的因素,并证明可以使用冗余约束来恢复它。作为本文的第二项技术贡献,我们表明,当考虑矩阵重量时,不能使用标量加权大满贯的状态放松。我们提供了一种替代配方,并表明其SDP松弛并不紧密(即使对于非常低的噪声水平),除非使用特定的冗余约束。我们在模拟和现实世界数据上证明了制剂的紧密度。
摘要 - 城市环境中的一致性本地化对于自动驾驶汽车和无人机等自主系统以及视觉上障碍者的辅助技术至关重要。传统的视觉惯性进程(VIO)和视觉同时定位和映射(VSLAM)方法虽然足以进行局部姿势估计,但由于依赖局部传感器数据,因此长期存在漂移。尽管GPS抵消了这种漂移,但它在室内不可用,在城市地区通常不可靠。一种替代方法是使用视觉功能匹配将相机定位到现有的3D地图。这可以提供厘米级的准确定位,但受当前视图和地图之间的视觉相似性的限制。本文介绍了一种新颖的方法,该方法通过将VIO/VSLAM系统生成的稀疏3D点云与使用点上的平面匹配相结合,从而实现准确且全球的本地化。不需要视觉数据关联。所提出的方法提供了一个6-DOF的全球测量,该测量紧密整合到VIO/VSLAM系统中。实验在高保真的GPS模拟器和从无人机收集的现实世界数据上进行,这表明我们的方法的表现优于最先进的VIO-GPS系统,并且与最先进的视觉大满贯系统相比,针对观点变化提供了卓越的鲁棒性。
下一代机器人应结合其他领域的想法,例如计算机视觉,自然语言处理,机器学习和许多其他领域,因为封闭环境需要在复杂的真实环境中基于多模式输入来处理复杂的任务。这个研讨会的计划着重于机器人学习的生成模型,该模型在于AI和机器人技术的重要和基本领域。基于学习的机器人技术方法已在各种任务中实现了高成功率和概括能力,例如操纵,导航,大满贯,场景重建,原则和物理建模。但是,机器人学习面临着几个挑战,包括数据收集的昂贵成本以及在不同任务和方案中的可转移性较弱。受到计算机视觉和自然语言处理的重大进展的启发,已经努力将生成模型与机器人学习结合在一起,以应对上述挑战,例如综合高质量数据,并将生成框架纳入表示和政策学习。此外,预先训练的大型语言模型(LLM),视觉语言模型(VLM)和视觉语言 - 行动(VLA)模型适用于各种下游任务,以充分利用丰富的常识知识。这种渐进发展使机器人学习框架可以应用于复杂而多样化的现实世界任务。
摘要 - 由于LiDar,Camera和IMU之间的固有互补性,最近对激光 - 视觉惯性大满贯付出了越来越多的努力。但是,现有方法在两个方面受到限制。首先,在前端,它们通常采用离散的时间表示,需要高精度硬件/软件同步,并基于几何激光功能,从而导致稳健性和可扩展性低。第二,在后端,视觉循环限制遭受了规模的歧义和点云的稀疏性,扫描到扫描环的检测恶化。To solve these problems, for the front-end, we propose a continuous-time laser-visual-inertial odometry which formulates the carrier trajectory in continuous time, organizes point clouds in probabilistic submaps, and jointly optimizes the loss terms of laser anchors, visual reprojections, and IMU readings, achieving accurate pose estimation even with fast motion or in unstructured scenes where it is difficult to extract meaningful几何特征。在后端,我们通过通过激光辅助视觉重新定位匹配预计的2D子包和6-DOF视觉约束来建立5-DOF激光限制,从而确保在大型场景中映射一致性。结果表明,我们的框架实现了高精度的估计,并且比载体在大型场景或快速移动时工作时更健壮。相关的代码和数据在https://cslinzhang.github.io/ct-lvi/ct-lvi/ct-lvi.html上进行开源。
具有计算机科学专业的艺术学士学位,需要完成两年的外语和62-64个主要小时,包括专注于应用或数字媒体。大满贯必须参加21个批准的活动。专业还必须在高三期间完成全面考试。本检查包括实施项目,本工作的书面和口头介绍,以及在主要领域的课程中进行的书面考试。该考试的项目和演示部分包含在COS 492高级项目中。课程不可用来满足多个要求:核心或集中度。所有主要课程都必须以C-或更高的成绩完成,并包括在主要GPA中。核心要求cos 103 1计算机科学和工程:新专业取向COS 109 3计算机和网络操作COS 120 4计算问题解决简介COS 121 4基础COS 121 4 Interactive WebPage开发COS 243 3多型网络应用程序243 3多型Web应用程序开发cos 265 cos 265 cos 265 4数据结构和算法cos 393 3练习cos 393 392 COS 393 392 COSS SCICUCTIC 492 COSS SCICUCTIC 492 COSS SCOCELS 492 ICTARCONTIC 492 SCOCELICTOR 311 3计算机科学中的伦理COS 321H 3伦理和技术集中 - 学生必须选择以下浓度之一:
视觉同时本地化和映射(SLAM)提出了一种有希望的途径,以实现使用具有成本效益的视觉传感器的自主驾驶系统中必不可少的受理和本地化任务。然而,存在视觉大满贯框架通常会遭受重大累积错误和在互补的驾驶场景中的性能下降。在本文中,我们提出了Vilam,这是一个新颖的框架,利用智能的路边基础设施实现高精度和全球一致的本地化和自动驾驶汽车的映射。VILAM的关键思想是利用基础架构的精确场景测量作为全局引用,以纠正车辆构造的本地地图中的错误。为了克服3D局部图中的唯一变形,以使其与基础架构测量一致,Vilam提出了一种新型的Elastic Point云注册方法,该方法可以独立优化本地地图的不同部分。Vilam采用了轻质因子图构造和优化,以首先纠正车辆轨迹,从而有效地重建了一致的全局地图。我们在多个道路场景中的真实世界智能灯柱测试中启动了Vilam端到端。广泛的实验表明,Vilam可以通过消费者级别的板载摄像头实现分解级级别的局部iZation和映射准确性,并且在多样化的道路场景下非常强大。在我们的实际测试床上的Vilam视频演示,请访问https://youtu.be/ltlqdnipdve。
2025 年 1 月 27 日 与 IHP 一起庆祝国际妇女和女童参与科学日!该活动连续第三年成为有抱负的女科学家与专家之间的沟通平台。法兰克福(奥得河畔)。 2 月 11 日,与我们一起庆祝国际妇女和女童参与科学日,这一天致力于增强女学生的权利并推广 STEM 学科(科学、技术、工程和数学)。今年的项目包括两项独特的活动,旨在为参与者提供信息、激励他们并与科学界的杰出女性建立联系。上午节目:为女孩探索科学 时间:上午 8:30 - 上午 11:30 观众:来自法兰克福的女学生 我们邀请 20 名女学生与我们一起度过一个充满发现和动手科学的激动人心的早晨。多位科学家将在不同的节目中深入阐述他们的工作。该项目包括入门讲座、参观 MBE 和光子学实验室、参观洁净室、讲座和科学大满贯。本次活动为我们的年轻嘉宾提供了探索 STEM 领域激动人心的机会,并接触了科学榜样。下午活动:小组讨论 时间:下午 3:30 - 5:30 目标受众:普通公众、教师和年轻研究人员 下午,我们将与来访者和知名演讲者进行小组讨论: