建议引用:Hemalatha R,Samarasimha Reddy N,Sairam Challa,Venkatesh K,Raghu Pullakhandam,Nandeep ER,Teena D,Mahesh Kumar M,Raghavendra P.印度铁的强化大米的效力和安全性 - 印度 - 白色纸,ICMR -rational Institutation of Nutritiity of Nutritiitutity of Nutritiitutity of Nutritiitutity of Nutritiitutity of Nutritiitutity of Nutritiity,herydritiity,Hyderabad。2023。
区块链技术的独特特征导致除了金融外,在各个领域都采用了它。这样一个领域就是供应链,缺乏透明度和信息可追溯性。尤其是在农业领域中,需要一种像区块链这样的新兴技术来消除一些常见的陷阱,例如原产地采购,避免产品掺假,追踪整个农业供应链,客户满意度以及确保透明度。本文研究了可追溯性系统中区块链技术的工作和采用。随后,它实施了区块链技术,以使用Python和Flask Framework创建分布式农业供应链网络。所有利益相关者都将在该网络中连接以进行透明的产品交易。产品来源将从数字分类帐记录中标识,因为每个交易都由产品和存储在其中的利益相关者的详细信息组成。所有利益相关者都被视为已验证的对等节点,该节点使网络安全。这项工作总体上为供应链网络提供了透明度,安全性和可靠性。
南亚和东南亚地区是世界领先的水稻生产国,占2021年全球水稻产量的58%[USDA,2022年]。Asian agriculture, especially rice farming, has been facing stagnant yields [Ladha et al ., 2003], declining productivity of production factors, nutrient deficiencies, or soil degradation [Tripathi and Das, 2017], depleting groundwater, labour scarcity, over-exploitation of natural resources such as water [Humphreys et al ., 2010] and higher cost of cultivation.在简而言之,农业和粮食系统的可持续性处于危险之中。稻米仍然与国家和次国粮食安全必须紧密相关。近年来,亚洲(南亚和东南亚)的稻米生产系统越来越受到气候变化的威胁,例如恶劣天气的增加,包括热浪,干旱,不可预测的降水量,盐分升高,盐分升高,海平面上升,洪水,洪水和淹没[Yan等人[Yan等,2022; Redfern等,2012]。亚洲国家同时更加底漆和脆弱,以改变经济进步的变化。在过去的二十年中,亚洲国家的城市化率更快,工资上升,饮食的多样性增加以及人口密度增加,导致生产农业面积下降[Mishra等,2022; Mottaleb和Mishra,2022年]。在亚洲国家的气候变化(增加的干旱,极端天气,洪水和热量)在粮食生产中发挥了重要作用,因此将对粮食生产,尤其是水稻生产产生深远的影响。如Furuya和Koyama [2005],Li和Wassmann [2011]和Yan等人所述。[2022],天气变化或气候变化可能导致世界大米的产量下降并产生差距,并且已经证明对农业生产和农民的社会经济状况产生负面影响。
摘要:维生素 A 缺乏症是一个全球性的健康问题,对发展中国家的人们影响尤为严重。它会导致严重的健康问题,例如免疫系统虚弱和视力受损。转基因技术已成为解决这一问题的一种可能方法,通过增加大米、玉米和土豆等主食作物中的 β-胡萝卜素含量。大米、玉米和土豆是全球重要的主食作物,但缺乏维生素 A 等必需营养素。因此,科学家已成功地利用各种基因工程技术(如 CRISPR-Cas 基因编辑、基因枪转化和农杆菌介导的转化)将增强 β-胡萝卜素所需的基因插入这些作物中,从而为维生素 A 缺乏和营养不良提供了解决方案。
糖尿病专用肠内营养配方 (DSF) 是糖尿病患者管理的重要组成部分。在住院环境中,口服和肠内营养常常会导致高血糖,而高血糖与不良后果有关,包括死亡率增加 ( 1 )。在这种情况下使用 DSF 可以降低高血糖风险并改善血糖波动 ( 2 )。在门诊环境中,DSF 已成功用作代餐,可改善血糖、减轻体重 ( 3 ) 和缓解糖尿病 ( 4 )。对于营养不良患者,使用 DSF 可降低就诊和入院风险并减少医疗费用 ( 5 )。荟萃分析表明,由于DSF具有低血糖指数 (GI) 和血糖负荷 (GL)、较高的纤维和蛋白质含量,以及使用了健康的脂质混合物,因此可以降低餐后血糖反应、改善糖化血红蛋白和血脂状况并促进饱腹感 (6-8)。GI 表示相对于葡萄糖,对某种食物的餐后血糖反应,而 GL 代表类似的概念,但还考虑了一份此类食物中的碳水化合物含量 (9)。先前的研究还表明,DSF 对胃肠激素有直接影响,即胰高血糖素样肽-1 (GLP-1)、葡萄糖依赖性胰岛素促泌肽 (GIP)、肽YY (PYY) 和生长素释放肽 (10,11)。已知GLP-1和GIP通过刺激胰岛素分泌在调节餐后血糖方面发挥重要作用 (12)。这两种激素与 PYY 一起,也被认为是重要的饱腹感信号,而生长素释放肽则通过刺激食欲和增加食物摄入量发挥作用 (13)。尽管 DSF 有诸多好处,但在许多临床环境中,患者获得 DSF 的机会仍然有限,特别是在泰国等中低收入国家,成本和缺乏报销是重要障碍。因此,使用当地可获得的成分开发新型 DSF 可以降低成本并提高可用性,从而有可能改善患者获得 DSF 的机会。大米 (Oryza sativa L.) 是全球一半以上人口的主要主食,种植于 100 多个国家 (14)。大米含有复合碳水化合物、蛋白质和脂肪,可提供能量,是膳食纤维、γ-谷维素和植物固醇的良好来源,这些物质主要存在于
研究GS3基因的敲除是否影响农艺性状,维护者GM1B和GM2B的主要相关农艺性状是表征和比较。特征在内,包括晶粒长度,晶粒宽度,晶粒长度与宽度的比率,圆锥花序长度,每个圆锥花序的晶粒数,每个圆锥花序的晶粒数,种子设定速率,1000粒度,有效的tiller数,有效的tiller数,在活动阶段,植物的高度,每工厂的植物高度和重量,并在图5和表3中显示了数据。结果的统计分析表明,GM1B和GM2B在分丁式数量,晶粒宽度和每个圆锥花序填充的晶粒数中没有显着差异,但是晶粒长度,1000晶粒重量和每个圆锥花序的晶粒数量分别增加了7.9%,7.7%,7.7%和25.5%。与GM1B相比,尽管GM2B的种子设定速率降低了13.6%,但其每工厂的重量显着增加了14.9%。每植物的谷物产量期限,在相应的CMS线(GM1A和
摘要:由真菌杂草虫L.引起的大米爆炸被认为是对世界大米生产的主要威胁之一。抗性品种的发展是最好的,可持续的控制替代品之一。植物育种工作已通过遗传图(连锁和关联)和标记辅助选择加速。On the other hand, genomic editing techniques, such as meganucleases (MNs), Zinc-finger nucleases (ZFNs), Transcription Activa tor–like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindrome Repeats/ CRISPR-associated protein 9 (CRISPR/Cas9), can be used to promote specific genetic modifications.同样,转基因也可以用于操纵特定基因。从这个意义上讲,这项工作旨在表征大米爆炸并阐明可用的生物技术替代方法,以加速改善水稻品种对水稻爆炸具有耐药性的发展。关键词:非生物压力,生物技术工具,Oryza sativa L.,pyricularia oryzae L.
全球超过一半的人口取决于大米作为主要的粮食作物。大米(Oryza sativa L.)容易受到非生物挑战的攻击,包括干旱,寒冷和盐度,因为它在半偏生,热带或亚热带环境中生长。非生物应激性抗性已繁殖到水稻植物中。在发现基因组之前,使用正向遗传学方法鉴定了非生物应激相关的基因,并且使用传统的育种方法开发了耐非生物应激的线条。动态转录组表达表示在其生长和发育中特定点的单个生物体的特定细胞,组织或器官中的基因表达程度。转录组学可以在整个转录水平的压力条件下在整个基因组水平上揭示表达,这可以有助于理解与植物的胁迫耐受性和适应性有关的复杂的调节网络。水稻(Oryza sativa L.)基因家族使用其他植物物种的参考基因组序列相对发现,从而允许全基因组鉴定。通过基因表达填充的转录组学,最近由RNA-Seq统治了基因组技术。 所有这些基因组和转录组技术使参与水稻反应的众多重要QTL,S基因,启动子元素,转录因子和miRNA都成为可能。 在本综述中讨论了使用几种基因组和转录组方法来理解水稻(Oryza sativa,L。)承受非生物压力的能力通过基因表达填充的转录组学,最近由RNA-Seq统治了基因组技术。所有这些基因组和转录组技术使参与水稻反应的众多重要QTL,S基因,启动子元素,转录因子和miRNA都成为可能。在本综述中讨论了使用几种基因组和转录组方法来理解水稻(Oryza sativa,L。)承受非生物压力的能力
在大米(Oryza sativa)谷物发育期间出现的热应激会降低谷物质量,这通常表现为增加的谷物粉笔。尽管对热应激对谷物产量的影响进行了充分研究,但由于量化晶粒质量的探索程度不如谷物产量,因此在热应激下稻米质量的遗传基础较少。为了解决这个问题,我们使用了基于图像的比色测定法(红色,R;绿色,g)进行全基因组关联分析,以鉴定暴露于热应激的水稻晶粒中表型变异的基因基因座。我们发现从成熟谷物图像得出的R与G像素比(RG)有效地区分了来自对照(28/24°C)的半透明晶粒和热应激(36/32°C)植物。我们的分析产生了一种新型的基因,即米粉晶粒5(OSCG5),该基因调节热应激下的晶粒粉笔的自然变化。OSCG5编码一种晶粒特异性,表达的蛋白质未知功能。OSCG5转录本丰度的加入表现出较高的粉笔性,这与应力下的RG值较高有关。这些发现在热应激下相对于野生型(WT)的OSCG5敲除(KO)突变体的粉笔增加了。过表达OSCG5的植物的晶粒不如KOS,但在热应激下与WT相当。与WT和OE相比,KO突变体相对于对照组具有更大的热敏感性。共同表明,OSCG5的自然变化可能在热应激下有助于水稻质量。
品种创建方法的演变导致2012年的基因组编辑技术的出现,CRISPR-CAS9。这种技术将使快速,便宜地创建新品种成为可能。尽管有些人认为CRISPR-CAS9是革命性的,但另一些人认为这是潜在的社会威胁。为了记录骗子,我们解释了可以接受这种技术在马达加斯加创建雨养水稻品种的社会经济条件。该方法论框架基于38个个人和半结构化访谈,与组织采访的多家利益相关者论坛以及对148个水稻生产者的调查。的结果表明,基因组编辑的可接受性需要(i)通过调节结构的运作以及利益相关者对转基因生物的了解的升级来加强种子系统,(ii)评估编辑的多样性对生物多样性和土壤氮动力学和(iii)的生物多样性和人体cap剂的影响。用于调节种子系统的结构机制是确保基因组编辑技术的安全实验的必要条件。组织创新似乎也是必要的。该研究表明,科学家和非认识主义者社区之间的集体学习如何是各种创新过程的组成部分。