所有活生物体在其中央代谢中都有类似的反应,为所有19个基本构件和降低力量提供了前体。确定糖酵解20的替代代谢途径是否可以在大肠杆菌中运行,我们在硅设计,合理的工程和自适应21实验室进化中互补。首先,我们使用了一个基因组规模模型,并在该生物体的22个代谢网络中鉴定了两种潜在途径,取代了规范的Embden-Meyerhof-Parnas(EMP)糖酵解,将23个转化为有机酸的磷酸化。这些糖酵解路线之一是通过甲基乙二醇(通过丝氨酸生物合成和降解)进行的。然后,我们在大肠杆菌菌株中实施了两种途径25具有缺陷的EMP糖酵解。令人惊讶的是,通过甲基乙二醇的途径立即在26个三氧磷酸异构酶缺失菌株中培养在甘油上。相比之下,在磷酸甘油酸激酶27缺失菌株中,对于实现功能性28甲基甘氨酸途径的过表达是必要的。此外,我们设计了“丝氨酸分流”,该“丝氨酸分流”通过丝氨酸生物合成和降解转换为丙酮酸,绕过烯醇酶缺失。最后,为了探索30种这些替代方案中的哪些替代方法,我们使用烯醇酶缺失菌株进行了自适应实验室31进化研究。证明进化的突变体使用丝氨酸分流。32我们的研究揭示了代谢途径的灵活性重新定位,以建立新的代谢产物链接和重新连接33中央代谢。34
抗生素敏感性测试是一种测试细菌对抗生素反应的方法。这项研究旨在确定抗生素针对微生物活性的有效性。使用两种方法,即扩散方法和稀释方法进行灵敏度测试。使用纸盘(Kirby-bauer)对大肠杆菌和Shigella Sonnei细菌与阿莫西林,新霉素和磺酰胺抗生素进行扩散法进行了扩散法。所需的数据是抑制区的直径。结果表明,大肠杆菌对阿莫西林敏感,但对磺酰胺和新霉素有抵抗力。同时,Shigella Sonnei对阿莫西林,新霉素和磺胺酰胺具有抵抗力。此外,使用液体稀释法测试了稀释法以测试阿莫西林对大肠杆菌细菌的效力。所需的数据是带有液体培养基的测试管,没有显示浊度。结果表明,阿莫西林对大肠杆菌的最小抑制浓度为0.25%。基于使用扩散和稀释方法的抗生素敏感性测试的结果,可以得出结论,阿莫西林对大肠杆菌细菌具有很高的有效性,最小抑制浓度为0.25%,而志贺氏菌对抗生素的耐药性具有抗性。
图2。集成的工作流解决方案,以支持过程开发和GMP环境。Resdnaseq DPCR大肠杆菌DNA试剂盒是生物药物制造过程中用于杂质测试的集成工作流程的一部分。使用Applied Biosystems™PrepSeq™残留DNA样品制备试剂盒的Thermo Scientific™Pharma Flex themo Scientific™Pharma Flex™Flex 96深孔磁性颗粒处理器可确保残留大肠杆菌DNA的高恢复,甚至减少劳动力减少,甚至来自最复杂的样品矩阵的误差较小。使用Applied Biosystems™QuantStudio™Absolute Q™软件简化了数据分析,该软件提供了准确的定量和安全性,审核和电子签名(SAE)功能,以启用21 CFR Part 11的合规性。
摘要 人类结直肠癌 (CRC) 很容易被产生大肠杆菌素的大肠杆菌 (CoPEC) 定殖。CoPEC 会诱发 DNA 双链断裂、DNA 突变、基因组不稳定性和细胞衰老。受感染的细胞会产生衰老相关分泌表型 (SASP),这与在感染 CoPEC 的 CRC 小鼠模型中观察到的肿瘤发生率增加有关。本研究调查了 CoPEC 以及源自 CoPEC 感染细胞的 SASP 是否影响化疗耐药性。用 CoPEC 临床 11G5 菌株或其同源突变体感染人类肠上皮细胞,后者无法产生大肠杆菌素。在体外和异种移植小鼠模型中评估了化疗耐药性。研究了受感染细胞中癌症干细胞 (CSC) 标志物的表达。使用 CRC 小鼠模型和人类临床样本验证数据。 11G5 感染细胞和与 11G5 感染细胞产生的 SASP 一起孵育的未感染细胞均在体内和体外表现出对化疗药物的抵抗力增强。这一发现与上皮-间质转化 (EMT) 的诱导相关,这导致出现具有 CSC 特征的细胞。它们在超低附着平板上生长,在软琼脂中形成菌落,并过度表达几种 CSC 标志物(例如 CD133、OCT-3/4 和 NANOG)。与这些结果一致的是,与缺乏 CoPEC 的活检相比,被 CoPEC 定植的小鼠和人类 CRC 活检显示出更高的 OCT-3/4 和 NANOG 表达水平。结论:CoPEC 可能通过诱导对化疗具有高度抵抗力的癌症干细胞的出现来加重 CRC。
摘要:苯乙烯是一种重要的工业化学化学物质。尽管有几项研究报告了微生物苯乙烯的产生,但可以增加批量培养物中产生的苯乙烯量。在这项研究中,使用基因设计的大肠杆菌产生了苯乙烯。首先,我们评估了拟南芥(Atpal)(Atpal)和Brachypodium distachyon(BDPAL)的五种类型的苯丙氨酸氨裂解酶(PAL),以产生反式甲酸(CIN),一种苯乙烯前体。ATPAL2-表达大肠杆菌的CIN大约700 mg/L,我们发现BDPAL可以将CIN转换为苯乙烯。为评估苯乙烯的产生,我们构建了一个大肠杆菌菌株,该菌株从酿酒酵母中表达ATPAL2和阿魏酸脱羧酶。在含油醇的双相培养后,葡萄糖的苯乙烯产生和产量分别为3.1 g/L和26.7%(mol/mol),据我们所知,这是分批种植中获得的最高价值。因此,该菌株可以应用于苯乙烯的大型工业生产。
使用该酶的浓度。应在将使用的DMSO的最终浓度下进行酶的初始滴定(请参见上面的注1)。可以使用5-10%(v/v)DMSO(最终浓度),但这将导致活动巨大损失。在存在DMSO的情况下,需要添加更多酶,以允许其抑制作用。例如,如果酶在5%DMSO的存在下仅具有50%的活性,则是两倍(即2U)将需要添加以获得完整的超螺旋。在这种情况下,可能需要添加更多的抑制剂才能获得50%的抑制作用。4)稀释缓冲液含有高浓度的甘油,因此添加了总稀释缓冲液
复原 我们建议在打开前先短暂离心此小瓶,使内容物沉至底部。请使用去离子无菌水复原蛋白质至浓度为 0.1-1.0 mg/mL。我们建议添加 5-50% 甘油(最终浓度)并分装以在 -20°C/-80°C 下长期储存。我们默认的甘油最终浓度为 50%。客户可以将其作为参考。
获取安全且有营养的食物对于维持生命和保持身体健康至关重要。食用被病原体污染的食物会导致从腹泻到癌症等严重疾病。许多食源性感染可导致长期损伤甚至死亡。因此,及早发现食源性病原体(如致病性大肠杆菌菌株)对于公共安全至关重要。检测这些细菌的传统方法基于在选择性培养基上培养并遵循标准生化鉴定。尽管这些方法准确无误,但却非常耗时。基于 PCR 的病原体检测依赖于先进的设备和专业技术人员,而在资源有限的地区很难找到这些设备和技术人员。而 CRISPR 技术对于识别致病细菌更具特异性和灵敏度,因为它采用可编程的 CRISPR-Cas 系统,可针对特定的 DNA 序列,最大限度地减少非特异性结合和交叉反应。在本项目中,开发了一种基于 CRISPR-Cas12a 传感的稳健检测方法,该方法可快速、灵敏且特异性地检测从田纳西州 17 个农场的成年山羊粪便样本中收集的致病性大肠杆菌分离株。检测反应包含致病区域、报告探针、Cas12a 酶和三种致病基因(stx1、stx2 和 hlyA)特有的 crRNA 的扩增 PCR 产物。与致病细菌的 CRISPR 反应在紫外光激发下发出荧光。为了评估该检测的检测灵敏度和特异性,将其结果与基于 PCR 的检测检测进行了比较。两种方法对相同样本的结果相似。该技术非常精确、高度灵敏、快速、经济高效且易于使用,并且可以轻松克服现有检测方法的局限性。该项目可以产生一种多功能的检测方法,该方法易于适应快速响应,以检测和监测对人类健康以及动植物生产造成大规模生物安全威胁的疾病。
摘要:欧洲食品安全局(EFSA)鉴定出扩展的谱β-乳糖酶/ AMPCβ-乳糖酶(ESBL/ AMPC) - 生产大肠杆菌是家禽的主要优先危害之一。不同的研究检测到肉鸡肥大农场和屠宰场中产生ESBL的大肠杆菌,得出结论,家禽肉是人类感染的潜在来源。在三个带有不同烫伤技术的屠宰场中采集的肉鸡皮肤样品,检查了产生ESBL的大肠含量(e。)大肠杆菌及其系统发育群体。发现了总共307个产生ESBL的大肠杆菌分离株,并具有常规浸入水的屠宰场,并进行了热处理水的热处理的发病率最低。d/e和b1大部分被检测到,而未检测到天群C,d和e。以低比例检测到了b2。 天群B2和D很重要,因为它们与人类的尿路感染相关,但在本研究的不同处理阶段中仅以低比例检测到它们。 由于不能排除通过鸡肉肉类感染的消费者通过鸡肉感染的风险,因此无法排除高度致病的门将的大肠杆菌和大肠杆菌,因此良好的厨房卫生非常重要。以低比例检测到了b2。天群B2和D很重要,因为它们与人类的尿路感染相关,但在本研究的不同处理阶段中仅以低比例检测到它们。由于不能排除通过鸡肉肉类感染的消费者通过鸡肉感染的风险,因此无法排除高度致病的门将的大肠杆菌和大肠杆菌,因此良好的厨房卫生非常重要。