摘要:大豆种子由大约40%的蛋白质和20%的油组成,使其成为世界上最重要的栽培豆类之一。但是,这些化合物的水平彼此负相关,并由由多个基因控制的定量性状基因座(QTL)调节。在这项研究中,总共使用Daepung(Glycine Max)与GWS-1887(G. Soja,高蛋白质的来源)衍生的190 F 2和90 Bc 1 F 2植物,用于蛋白质和油含量的QTL分析。在F 2:3中,平均蛋白质和油含量分别为45.52%和11.59%。在Chr上的GM20_29512680上检测到与蛋白质水平相关的QTL。20的可能性(LOD)为9.57,R 2为17.2%。在Chr上的GM15_3621773上也检测到与石油水平相关的QTL。15(LOD:5.80; R 2:12.2%)。 在BC 1 F 2:3种群中,平均蛋白质和油含量分别为44.25%和12.14%。 在Chr上的GM20_27578013上检测到与蛋白质和油含量相关的QTL。 20(LOD:3.77和3.06; R 215(LOD:5.80; R 2:12.2%)。在BC 1 F 2:3种群中,平均蛋白质和油含量分别为44.25%和12.14%。在Chr上的GM20_27578013上检测到与蛋白质和油含量相关的QTL。20(LOD:3.77和3.06; R 2
酱油是东方发酵调味品,在许多亚洲美食中都是关键成分。随着世界各地的消费者的饮食选择和喜好变得越来越冒险,亚洲美食的需求和普及在全球范围内都在增加。酱油发酵的基本基础是复杂的微生物相互作用,在定义所得酱油的质量,风味和气味中起着至关重要的作用。传统的酱油发酵包括一个两步的过程:曲吉和莫罗米发酵。尽管在酱油中存在有益的微生物,但在小曲霉或摩洛米步骤中也可以找到各种有害的微生物,从而导致酱油污染。因此,研究微生物的生物多样性和相互作用对于确保酱油质量至关重要。因此,本综述在深度讨论了对酱油发酵有益或有害的各种细菌和真菌物种。本综述还讨论了酱油发酵的进步,例如微生物在酱油中增强γ-氨基丁酸(GABA),通过混合启动培养物以及基因组散发起始培养物来增强酱油风味。
摘要:种子糖成分,主要包括果糖,葡萄糖,蔗糖,raf鼻和stachyose,是大豆[甘氨酸Max(L.)Merr。]种子质量。但是,对大豆糖成分的研究是有限的。为了更好地了解大豆种子中糖成分的遗传结构,我们使用了323个大豆种质添加剂的种群进行了全基因组关联研究(GWAS),这些研究在三种不同的环境下进行了生长和评估。在GWAS中选择并使用了总计31,245个单核苷酸多态性(SNP)≥5%(MAFS)≥5%,缺少数据≤10%。与单个糖相关的分析72定量性状基因座(QTL),与总糖相关的14个。在六个染色体的铅SNP的100 kb旋转区域内的十个候选基因与糖含量显着相关。根据GO和KEGG分类,大豆中的糖代谢涉及八个基因,并在拟南芥中显示出相似的功能。另外两个位于与糖相关的已知QTL区域中,可能在大豆的糖代谢中发挥作用。这项研究促进了我们对大豆糖组成的遗传基础的理解,并促进了控制这种特征的基因的鉴定。认同的候选基因将有助于改善大豆中的种子糖成分。
于1975年4月16日在隆德里纳(Londrina),帕拉纳(ParaNá),Embrapa soja(Embrapa Soybean)拥有为大豆生产系统提供解决方案的历史。在广泛的合作伙伴关系中,它已成为热带地区大豆文化的技术生成中的世界。在其对大豆作物的几种矛盾中,应突出显示:1)固氮细菌的接种剂; 2)土壤管理,3)受精,4)土壤保护技术; 5)综合管理害虫,疾病和杂草,以及6)为不同的巴西农业地区开发大豆品种,这使农作物在低纬度的非传统种植区域扩张;等等。Embrapa Soybean还为Paraná,圣保罗和Mato Grosso do Sul开发了小麦品种。
本研究的主要目的是分离和形态学鉴定与大豆植株相关的真菌以及乌兹别克斯坦大豆种植田土壤层中的真菌。通过对从田间调查中采集的 160 个大豆植株部分进行真菌学研究,分离出 95 种腐生和植物病原真菌菌株,根据种类分配,其分布如下:链格孢属 3%、菊池尾孢 3%、毛霉属 3%、炭疽菌 3%、灰葡萄孢 3%、F. Heterosporum 4%、Penissulium spp. 7%、镰刀菌属。 8%、链格孢属9%、木霉属9%、黑曲霉10%、黄色镰刀菌11%、尖镰孢菌13%、镰刀菌14%。通过对土壤样品进行真菌学研究,共回收了40个真菌分离株,其种类分配如下:链格孢属、镰刀菌属、木霉属、尖镰孢菌、黄色镰刀菌、链格孢菌、镰刀菌、黑曲霉、Penissulium sp. 毛霉属。本研究获得的真菌分离株可用于促进乌兹别克斯坦大豆病害有效综合管理的发展。
种子大小和形状是确定大豆产量和质量的重要特征。种子大小和形状对于豆腐,纳托,味o和毛豆等特殊大豆食品也是可取的。为了发现稳定的定量性状基因座(QTL)和候选基因种子形状和100种子重量,目前的研究使用了蔬菜类型和种子大豆衍生的F 2和F 2:3映射种群。总共映射了42个QTL,分散在13个染色体上。确定七个是稳定的QTL,其中五个是主要的QTL,即QSL-10-1,QSL-4-1,QSW-4-1,QSV-4-1,QSV-4-1,QSLW-10-10-1和QSLH-10-1。在当前研究中检测到的42个QTL中的13个是在已知基因座发现的,而其余的29则是第一次发现。在这29个新颖的QTL中,有17个是主要的QTL。基于通过进化关系(Panther),基因注释信息和文献搜索的蛋白质分析,预计七个稳定的QTL中的66个基因被预计可能是可能调节大豆中种子形状和种子体重的候选基因。当前的研究确定了控制大豆种子形状和体重的关键候选基因和定量性状基因座(QTLS),这些结果将非常有助于标记辅助育种,以开发具有改善种子体重和所需种子形状的大豆品种。
摘要:脱落酸(ABA)是一种重要的植物激素,参与调节植物生长、发育和逆境响应中的多种功能。多种蛋白质参与调控环境胁迫下ABA信号转导机制,其中PYR1/PYL/RCAR家族为ABA受体。本研究利用CRISPR/Cas9基因编辑系统和单个gRNA敲除大豆三个PYL基因:GmPYL17、GmPYL18和GmPYL19。T0代植株基因分型结果显示,gRNA可有效敲除GmPYL17、GmPYL18和GmPYL19基因靶序列,并使其发生不同程度的缺失。一组诱导的等位基因被成功转移到后代。在T2代,我们获得了双重和三重突变的基因型。在种子萌发阶段,CRISPR/Cas9技术制备的GmPYL基因敲除突变体,尤其是gmpyl17/19双突变体对脱落酸的敏感性低于野生型。利用RNA-Seq技术,通过3个生物学重复研究不同处理下萌发幼苗对脱落酸反应相关的差异表达基因。gmpyl17/19-1双突变体种子萌发过程中对脱落酸的敏感性降低,突变株高和分枝数高于野生型。在脱落酸胁迫下,GO富集分析显示一些正向萌发调控因子被激活,降低了脱落酸敏感性,促进了种子萌发。本研究为从分子水平上深入研究脱落酸信号通路及其关键成分的参与提供了理论基础,有助于提高大豆对非生物胁迫的耐受性,同时也有助于育种者调控和提高大豆在不同胁迫条件下的产量和品质。
10。Homrich,M。S.,Wiebke-Strohm,B.,Weber,R。L.和Bodanese-Zanettini,M。H.(2012)。 大豆遗传转化:基因功能研究和农艺改良植物的产生的宝贵工具。 遗传学和分子生物学,35(4(Suppl)),998–1010。 https://doi.org/10.1590/s1415-47572012000600015。Homrich,M。S.,Wiebke-Strohm,B.,Weber,R。L.和Bodanese-Zanettini,M。H.(2012)。大豆遗传转化:基因功能研究和农艺改良植物的产生的宝贵工具。遗传学和分子生物学,35(4(Suppl)),998–1010。https://doi.org/10.1590/s1415-47572012000600015。
大豆是一种重要的豆科作物,主要用于提取油脂和蛋白质,可作为人类和牲畜的食物来源。我们还可以利用从大豆中获得的蛋白质来提取生物燃料。迫切需要增加对大豆的基因研究,以改良和提高产量。对大豆进行基因研究的一个重要原因是提高其对气候变化的适应能力。在现代,CRISPR/Cas9 已发展成为一种新兴技术,使我们能够操纵包括大豆在内的大多数作物中选定性状的基因。先进的生物技术工具被广泛用于提高作物产量、提高质量和产量、引入抗病虫害能力以及环保。本综述概述了 CRISPR/Cas9 的机制如何发挥作用,并简要讨论了 CRISPR/Cas9 扩大了大豆基因改良的研究范围。它还说明了一些我们可以使用 CRISPR/Cas9 改良大豆的现象。关键词:CRISPR/Cas9;遗传改良;大豆;基因编辑。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 8 月 23 日发布。;https://doi.org/10.1101/2022.08.22.504807 doi:bioRxiv preprint