探讨HERA-JANUS模型本身的有效性,以期为我国航空安全提供可能的帮助。本文根据此次空难的具体描述,通过人因失误类型分析、人因失误认知分析、相关因素分析等,确定了各环节管制员人因失误因素的类型及特点。最后进行总结得出结论,并提出切实可行的方法,以减少管制员人因失误,加强相关监管,促进航空事业安全高效发展。
制药公司已要求使用其疫苗的国家赔偿他们因接种疫苗引起的罕见不良事件而产生的任何责任索赔。当欧盟成员国试图捐赠疫苗时,他们将风险转嫁给了接收国。《英国医学杂志》看到的意大利、利比亚和阿斯利康之间的三方捐赠协议指出,接收国(这里指的是利比亚)“在任何情况下都要赔偿并使成员国免受使用疫苗后可能发生的所有索赔和损失”,无论索赔或损害“源于产品的分发、管理和使用、临床测试或研究、制造、标签、配方、包装、捐赠、配药、开具处方或许可”。
随着无人机系统 (UAS) 继续快速发展以满足我们陆军的需求,其在航空编队中的演变也随之加快。随着 RQ-7B Shadow 的加入,我们的战斗航空旅 (CAB) 在过去 5 年中呈指数级增长。这种快速且有点不受约束的需求和增长是有代价的——尤其是在安全方面。在 2019 至 2021 财年,Shadow 的 UAS 事故率与前几年(2016-2018 年)相比有所增加。本次审查旨在加强努力,以提高人们对目前影响 RQ-7B 平台的安全问题的认识,特别是与人为错误有关的问题。与过去几年一样,物资故障仍然是 UAS 的主要致病因素;然而,与人为因素相关的事故显著增加。2021 年,陆军发生了 8 起 B 级事故和 22 起 C 级事故。其中,14 起事故归因于人为失误。以下是 2021 年事故小插曲的汇编,将重点介绍 UAS 专业人员可以集中精力采取更大风险缓解措施以及提高整个编队意识的领域。
人为错误,当然还有行为主义者采取的方法。通常在航空领域,这是参考图 1 这样的插图来描述的。飞行按横坐标上的阶段绘制,纵坐标是特定操作所需的任务负载。飞行员能力的极限在图示顶部水平显示为理论上限,但这一极限可能会因现实生活而降低,例如疾病、情绪变化、训练不足等。同样,如果设备发生故障或操作情况有特殊要求,无论是由于紧急情况还是任务中隐含的事件,名义任务要求都会增加。任务超负荷理论只是假设检查需要完成的任务与飞行员能力的并置;当它们重叠时,错误/事故就可能发生,因此必须纠正某些事情——任务和/或人。
这些潜在的错误之所以会发生在这个非常复杂的过程中,是因为人类是有史以来最复杂的设备,并且受到某些能力和限制的影响。一个人甚至可能没有意识到他有这些入站和出站“过滤器”,只允许接收某些类型、数量和质量的“数据”(用一个广义的术语来说)。他只能产生某些类型、数量和质量的输出。他的识别、解释和选择功能尤其高度依赖于训练和先前的经验,以及难以捉摸的力量、动机,因此决策过程中的错误很常见。幸运的是,他的纠正行动能力非常惊人;也就是说,他可以感知到不必要的偏差,并在出现严重问题之前修改他先前的决定和反应。因此,总的来说,人类是系统可靠性和安全性的高度发达的辅助工具。
摘要:犯错是人类的固有特性,这意味着在某种程度上,人为错误是不可避免的。业务改进工具和实践忽视了处理人为错误的根本原因;因此,它们忽略了某些可能防止或尽量减少此类错误发生的设计考虑。认识到这一差距,本文试图概念化一个基于防错概念的结合认知科学文献的模型,从而提供更深层次、更深刻的人为错误分析。进行了一项涉及航空航天装配线的探索性案例研究,以深入了解所开发的模型。案例研究的结果揭示了人为错误的四种不同原因,如下:(i)描述相似性错误,(ii)捕获错误,(iii)记忆失误错误,以及(iv)中断。基于此分析,提出了相应的防错措施。本文为未来研究航空航天工业人为错误背后的心理学奠定了基础,并强调了了解人为错误的重要性,以避免在劳动力投入至关重要的生产环境中出现质量问题和返工。
摘要。在维护过程中尽量减少人为错误的概念正逐渐受到各行各业的关注。在解决工程问题(尤其是在维护过程中)时,人为因素的引入已不再是可以忽略的,因为需要高标准的绩效。通过减少人为错误来提高维护绩效的旅程始于了解维护过程中人为错误的原因和影响。本文评估了以前关于人为错误的学术著作,以具体确定维护过程中人为错误的原因和影响。本研究主要依赖于现有的关于维护过程中人为错误的文献,这些文献来自已发表和未发表的研究。研究的主要发现表明,导致维护过程中人为错误的许多关键因素包括管理和监督不力、组织文化、能力不足、程序编写不当、沟通不畅、时间压力、工厂和环境条件、工作设计不佳等等。文献综述还表明,人为错误对设备的安全性、可靠性、生产力和效率产生负面影响。进一步发现,导致事故、事件、生命损失和经济损失的设备故障是人为错误的主要影响。机械系统维护中的人为错误是一个严重的问题,需要引起足够的重视,以便制定正确的措施。
这些潜在的错误之所以会发生在这个非常复杂的过程中,是因为人类是有史以来最复杂的设备,并且受到某些能力和限制的影响。一个人甚至可能没有意识到他有这些入站和出站“过滤器”,只允许接收某些类型、数量和质量的“数据”(用一个广义的术语来说)。他只能产生某些类型、数量和质量的输出。他的识别、解释和选择功能尤其高度依赖于训练和先前的经验,以及难以捉摸的力量、动机,因此决策过程中的错误很常见。幸运的是,他的纠正行动能力非常惊人;也就是说,他可以感知到不必要的偏差,并在出现严重问题之前修改他先前的决定和反应。因此,总的来说,人类是系统可靠性和安全性的高度发达的辅助工具。
不了解工作中的潜在危险是防止自满情绪的有力手段。第三种是缺乏手头工作任务的知识或正确信息。这意味着技术或非技术信息、清单或安全程序可能没有得到充分正确的翻译,或者无法以当地语言提供给操作和维护团队。第四种是分心(例如,将注意力从工作任务上转移开)。分心是任何让我们忘记手头任务的事情。分心会让我们认为我们在工作流程或系统中比现在更进一步。第五种是缺乏团队合作以实现共同目标。第六种是疲劳(例如,意识水平下降),这会导致疲倦、劳累、紧张和精疲力竭。第七种是缺乏资源。这意味着未能使用或获得适当的工具、设备、信息和程序。在这种情况下,我们在使用正确的工具、手册或说明时不能即兴发挥。下一个是工作压力,它会产生一种紧迫感。工作压力也是由于我们缺乏计划或执行工作任务而造成的。在这种情况下,我们不应该过度承诺和交付与工作任务相关的任何东西。第九个是缺乏自信(例如,缺乏对需求的积极沟通),这对于新的工作系统或流程很重要。对可靠性的疑问和怀疑
专家认为航空业的失误是导致事故和事件的主要因素。本文探讨了导致尼日利亚飞行员和飞机工程师发生事件或事故失误的航空医学因素。本文利用了通过向随机抽样的受访者发放问卷收集的数据。飞行员和飞机工程师共发放了 300 份问卷。使用因子分析和多元回归分析相结合的方法分析数据。因子旋转后提取的变量表明,一般健康状况(78.20%)是导致飞机工程师失误的最重要原因。对于飞行员来说,迷失方向(79.20%)被发现是导致失误的最关键的航空医学原因。多元回归分析的结果显示,飞机工程师的 R = 0.651,飞行员的 R = 0.607。这些发现表明,由失误引起的航空事故和事件可以追溯到这些航空医学因素。该文件建议,在航空专业人员的许可和重新认证指南中增加对航空医学条件的严格执行,以便将尼日利亚航空业中因错误而导致的事故和事件减少到最低限度。