第一原理分子动力学用于描述无定形罪的原子结构,这是一种属于Si x n y家族的非认证计量化合物。通过冷却液体生产无定形状态,可以利用汽车 - 帕林内洛和出生的烟囱方法来获得具有较大原子迁移率的系统。在高温下,由于犯罪的特殊电子结构,表现出差距闭合效应,因此无法遵循汽车 - 荷兰方法,因为确实发生了涉及离子和电子自由度的非绝热效应。通过诉诸于Born-Oppenheimer方法来克服这种缺点,从而使在T = 2500 K处实现显着的离子差异。从这个高度不同的样本中,可以在室温下以10 k/ps的爆炸速率获得室温下的无定形状态。创建了四个不同的模型,并通过其大小和热周期差异。我们发现原子N的子网具有与化学计量材料Si 3 N 4相同的环境,因为N与Si大多是三倍。si原子也可以与Si 3 N 4中的四个N原子进行协调,但其中很大一部分形成了一个,两个,两个,三个甚至四个Si的同极键。我们的结果与垃圾中可用的以前的模型并不太相同,但是它们具有更高的统计准确性,并且更准确地将室温称为参考热力学条件,用于分析无定形状态的结构。
钙钛矿中的硫族化物和相关的 Ruddlesden-Popper 结构类型(本文简称为“硫族化物钙钛矿”)作为一类具有出色光电特性的新兴半导体,正受到越来越多的关注 [1–8]。硫族化物钙钛矿的带隙(𝐸 𝑔)可在蓝绿色(𝐸 𝑔 ≈2.5 eV)至红外 (IR) 范围内调节,具有很强的光吸收和发光性,多个研究小组的结果表明其固有的非辐射电子-空穴复合速度很慢 [4,6–10]。硫族化物钙钛矿由廉价无毒的元素组成,热稳定性极高,这对未来大规模制造和部署(例如薄膜太阳能电池)大有裨益 [11,12]。我们已经发现硫族化物钙钛矿是一种具有极强介电响应的半导体,在已知的可见光和近红外 (VIS-NIR) 带隙半导体中,只有铅卤化物钙钛矿可与它媲美 [13,14]。在最近的工作中,我们通过脉冲激光沉积 (PLD) 和分子束外延 (MBE) 首次合成了大面积、原子级光滑的 BaZrS 3 外延薄膜 [15,16]。
摘要:单分子磁铁{Mn 84}是对理论的挑战,因为它的核性很高。我们使用无参数理论直接计算两个实验可访问的可观察到的可观察到的可观察到的磁化值,最高为75 t和温度依赖的热容量。特别是,我们使用第一个原理计算来得出短期和远程交换相互作用,并计算所有84 MN S = 2旋转的所得经典Potts和Ising Spin模型的确切分区函数,以获得可观察的物品。通过使用绩效张量张量网络收缩来实现后一种计算,这是一种用于模拟量子至上电路的技术。我们还合成了磁铁并测量其热容量和磁化,观察理论与实验之间的定性一致性,并确定热容量中异常的颠簸和磁化强度的高原。我们的工作还确定了大磁铁中当前理论建模的某些局限性,例如对小型,远程交换耦合的敏感性。
相变材料 (PCM) 可以在结晶状态和非晶态之间快速可逆地切换,具有显著的光学和电子对比度。[1–3] 这些特性被广泛应用于电子非挥发性存储器 [4–7] 和纳米光子学等一系列设备中。[8–10] 在基于 PCM 的随机存取存储器 (PCRAM) 中,SET 操作通过结晶实现,RESET 通过熔融淬火非晶化实现。 可以对更复杂的操作进行编程,包括迭代 RESET 和累积 SET,对应于中间和部分结晶/非晶态,用于神经启发计算应用。[11–18] 伪二元 GeTe–Sb 2 Te 3 系列上的 Ge–Sb–Te (“GST”) 化合物 [19] 已得到广泛研究,旗舰化合物 Ge 2 Sb 2 Te 5 和 GeSb 2 Te 4 目前被用作
相变材料 (PCM) 可以在结晶状态和非晶态之间快速可逆地切换,具有显著的光学和电子对比度。[1–3] 这些特性被广泛应用于电子非挥发性存储器 [4–7] 和纳米光子学等一系列设备中。[8–10] 在基于 PCM 的随机存取存储器 (PCRAM) 中,SET 操作通过结晶实现,RESET 通过熔融淬火非晶化实现。 可以对更复杂的操作进行编程,包括迭代 RESET 和累积 SET,对应于中间和部分结晶/非晶态,用于神经启发计算应用。[11–18] 伪二元 GeTe–Sb 2 Te 3 系列上的 Ge–Sb–Te (“GST”) 化合物 [19] 已得到广泛研究,旗舰化合物 Ge 2 Sb 2 Te 5 和 GeSb 2 Te 4 目前被用作
Yuan Fang 1,2# , Ding Wang 1,2# , Peng Li 1,2 , Hang Su 1,2 , Tian Le 1,2 , Yi Wu 1,2 , Guo-Wei Yang 1,2 ,
因此,对于应用而言,非常需要一种带隙与 β -Ga 2 O 3 一样宽但对称性更高的材料。最近,Galazka 等人报道了块体熔融生长的高结构质量 ZnGa 2 O 4 (ZGO) 单晶,可由其制备不同取向的绝缘和半导体晶片。[11,12] ZGO 结晶为立方尖晶石结构(Fd3m 空间群),如图 1 中的球棒模型所示。尖晶石是指一类化学式为 AB 2 X 4 的化合物,其中 A 是二价阳离子,如 Zn,B 是三价阳离子,如 Ga,X 是二价阴离子,如 O。在 ZGO 的正常尖晶石结构中,Zn 占据四面体位置,而 Ga 占据八面体位置。在高温熔体生长过程中,八面体和四面体位置的占据是随机的。[11] 长时间冷却可稳定正常尖晶石结构,而较短的冷却时间会引入反位缺陷。反位缺陷导致 n 型导电性,自由电子浓度在 10 18 – 10 19 cm 3 的数量级上。在氧化气氛中以 800 – 1400 C 的温度进行 10 小时的生长后退火或在 700 C 的温度进行 40 小时的生长后退火后,ZGO 晶体可转变为绝缘状态。[11 – 13] 由于其立方尖晶石结构,ZGO 具有各向同性的热性能和光学性能。发现 ZGO 的光学带隙为 4.6 eV,接近 β -Ga 2 O 3 的光学带隙,并且没有观察到优选的解理面。[11,12]
知识回忆问题 A. 原子和同位素 1. 一个原子的直径约为 0.000 000 000 2m。请给出标准形式的直径? 2. 原子核由什么组成? 3. 描述当电子在原子中降至较低能级时会发生什么。 4. 钠原子表示为: 使用此信息确定钠原子中的质子、中子和电子的数量。 5. 附着在以下物质上的电荷是多少: i. 中子 ii. 电子 iii. 质子 6. 氟的质量数和原子序数是多少? 7. 铍的化学符号为。使用此信息绘制铍原子的表示。 8. 铍的另一种同位素有一个额外的中子。写出这种新铍同位素的化学符号。
量子计算机具有执行准确且有效的电子结构量的潜力,从而实现了材料性质的模拟。然而,由于存在错误,今天的嘈杂,中等规模量子(NISQ)设备的量子和门操作数量有限。在这里,我们提出了一条可系统地改进的端到端管道,以减轻这些限制。我们提出的资源资源管道结合了问题分解技术,用于紧凑的分子表示,用于编译的电路优化方法,解决高级量子硬件上的特征值问题以及在处理后处理结果时采用的误解技术。使用密度矩阵嵌入理论进行紧凑的表示,并使用一个离子陷阱量子计算机,我们在电子结构计算中同样和明确地考虑了所有电子的10个氢原子的环。在我们的实验中,我们就通过完整的CI方法计算的总分子能在化学精度内类似化学计算机上最大的分子系统。我们的方法减少了当前工作中的数量级,从而减少了高准确量子模拟所需的量子数量,从而可以使用NISQ设备对较大的,更工业相关的分子进行模拟。随着设备的计算能力继续增长,它们在系统上进一步改进。
摘要:本文提出了一种基于数字孪生信息更新海上风力涡轮机子结构可靠性的概率框架。具体来说,从数字孪生获得的信息用于量化和更新疲劳损伤累积中与结构动力学和载荷建模参数相关的不确定性。更新后的不确定性包含在用于更新结构可靠性的疲劳损伤累积概率模型中。更新后的可靠性可用作输入,以优化现有结构的运行和维护以及新结构设计的决策模型。该框架以两个具有代表性的海上风力涡轮机的数值案例研究和从先前建立的数字孪生中获取的信息为基础。在此背景下,研究了更新土壤刚度和波浪载荷的影响,这两个参数构成了两个高度不确定和敏感的参数。研究发现,更新土壤刚度会显著影响靠近泥线的接头的可靠性,而更新波浪载荷会显著影响位于溅区局部的接头的可靠性。用于更新波浪载荷的虚拟传感会增加不确定性,从而降低结构可靠性。