核定蛋白的蛋白质自组装偶氮修饰的蜘蛛丝蛋白用于制备具有固定在同一蛋白质涂层上的水凝胶样性能的纳米纤维网络中。在温和的水性环境中形成网络的厚度在2至60 nm之间,仅由蛋白质浓度控制。将蛋白质中的叠氮基团纳入纳米纤维上的短核酸序列,这些核酸序列可用于基于特定杂交的修饰,这是荧光标记的DNA互补证明的。使用脂质修饰符将DNA有效地掺入非辅助Jurkat细胞的膜中。基于核酸的互补性,可以使用可调细胞密度的纳米水凝胶上细胞上高度特异性的DNA辅助固定化。用竞争性寡核苷酸探针证明了DNA细胞到表面锚的可寻址性,从而迅速释放了75-95%的细胞。另外,我们开发了一个任意形状的微孔的基于光刻的图案,该图案在空间上定义了
Mbaye Dieng,Mohamed Bensifia,JérômeBorme,Ileana Florea,Catarina Abreu等。CVD石墨烯的湿化学非共价官能化:分子掺杂及其对电解质配备石墨烯现场效果晶体管晶体管的影响。物理化学杂志C,2022,126(9),pp.4522-4533。10.1021/acs.jpcc.1c10737。hal-03871463
这项研究研究了使用市售活性炭(AC)同时回收贵金离子。在通过微波辐射增强的封闭批处理反应器中进行吸附,从而产生高压和高温条件。检查了溶液的交流质量,过程,过程,温度,pH和离子强度的影响。高温,高压和微波辐射被证明是化学激活的有效手段,导致了近100%的吸附效率。建议微波辐射显着增加活性碳表面的局部温度,从而改变吸附机理。与没有微波支持的传统批处理反应堆相比,这种增强导致了更高的回收率。结果证明了该方法有效金属回收的重要潜力。
Golbarg M. Roozbahani 1,2, †, Patricia Colosi 3, †, Attila Oravecz 4,5,6,7, †, Elena M. Sorokina 3, Wolfgang Pfeifer 1,2, Siamak Shokri 1, Yin Wei 1, Yin Wei 1, Yin Wei 7,9 , Marcello Deluca 10, Gaurav Arya 10, LászlóTora4,5,6,7, *,Melike Lakadamyali 3,11,12, *,Michael G. Poirier 1,8,13, *和Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Castro 2,8, *Golbarg M. Roozbahani 1,2, †, Patricia Colosi 3, †, Attila Oravecz 4,5,6,7, †, Elena M. Sorokina 3, Wolfgang Pfeifer 1,2, Siamak Shokri 1, Yin Wei 1, Yin Wei 1, Yin Wei 7,9 , Marcello Deluca 10, Gaurav Arya 10, LászlóTora4,5,6,7, *,Melike Lakadamyali 3,11,12, *,Michael G. Poirier 1,8,13, *和Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Castro 2,8, *
DNA折纸纳米结构(DOS)是用于应用的有前途的工具,包括药物输送,生物传感,检测生物分子和探测染色质子结构。将这些纳米置换剂靶向哺乳动物细胞核可以提供有影响力的方法,用于探测,可视化和控制活细胞中的生物分子过程。我们提出了一种将DOS输送到活细胞核中的方法。我们表明,这些DO不会在细胞培养基或细胞提取物中经历可检测到的结构降解24小时。将DOS输送到人U2OS细胞的核中,我们结合了30纳米的纳米棒,其纳米棒具有针对核因子的抗体,特别是RNA聚合酶II的最大亚基(POL II)。我们发现,DOS在细胞中保持结构完整24小时,包括核内部。我们证明了电穿孔的抗POL II抗体结合的DOS被带回核中,并在细胞核内表现出次延伸的运动。我们的结果建立了与核因子的接口DOS,作为将纳米置换型传递到活细胞核中的有效方法。
有一个北极拱顶,热带玻璃杯,纸室和显微镜幻灯片的共同点吗?所有这些都可以是现场植物集合的家,其中物种被安置在其自然环境之外,以保存它们。尽管植物在其本地栖息地仍然是最终目标,但事实收藏在帮助识别物种和支持研究方面具有至关重要的作用。他们还可以为受到人类侵占的野生和栽培种群提供种质,以改变土地使用,植物均质化1,气候变化,战争和其他冲突的形式。Svalbard全球种子库(位于北极永久冻土中的一个掩体内)已成为种子库可以提供的希望的象征。它仅在2008年才开放,但它已经确定了其重要性:在2015年至2017年之间,国际干旱地区的国际农业研究中心(Icarda)能够从叙利亚内战期间丢失的种子丢失的种子中检索备用样本,并补充了辅助垫的固定性。保护生存能力是种子银行的关键挑战:在某些防腐剂条件下,可以从保存的种子中再生植物,但了解如何最大化种子生存能力和多样性仍然是研究的优先事项。也可以从干燥的标本室标本中检索遗传物质,并提供了独特的长期数据窗口。自然生态与进化中的文章使用标本室标本来表征数百年3年的植物气孔对气候变化的反应,并揭示了关键作物4的作用和适应。草药类似于其他形式的植物收集,不可避免地反映了收集它们的人类的偏见,以至于在植物
硼-二吡咯亚甲基 (BODIPY) 染料由于易于合成、模块化、可调的光物理和电化学性质、稳定性以及对可见光的强吸收而被广泛应用于光驱动过程。 [1] 根据 BODIPY 核心结构的取代模式,单线态和三线态激发态可以在光子吸收时优先填充,从而产生不同的应用。例如,BODIPY 的荧光特性已在生命科学中被用于生物传感应用或成像活动。 [2] 获取 BODIPY 染料的长寿命三线态可应用于光动力疗法、通过三线态-三线态湮没的光子上转换或光催化。 [3] 将重原子(即 Br、I、Au、Pt、Ru)共价连接到 BODIPY 核心结构是一种常用方法,通过自旋轨道耦合 (SOC) 诱导的系统间窜改来促进三线态的布居。 [4] 过去十年来,这些含重原子染料在光氧化还原催化和能量转移过程中的应用在文献中蓬勃发展。[5] 例如,含卤素的 BODIPY 催化剂已用于光氧化还原有机反应,如 N 取代四氢异喹啉的功能化、[6] 呋喃的芳基化和
摘要:大核酸(例如mRNA)向大脑的全身递送,部分原因是由于血脑屏障(BBB)和输送车辆在肝脏中积聚的趋势。在这里,我们设计了一个肽官能化的脂质纳米颗粒(LNP)平台,用于靶向mRNA向大脑的递送。我们利用点击化学来用肽在脑内皮细胞和神经元中靶向过表达的肽,即RVG29,T7,AP2和MAPOE肽。我们评估了LNP靶向在体外对脑内皮和神经元细胞转染的影响,研究了血清蛋白吸附,细胞内运输,内皮胞质症和外体分泌等因素。最后,我们表明LNP肽功能化增强了小鼠脑中的mRNA转染并减少全身给药后的肝输送。具体而言,RVG29 LNP改善了体内神经元转染,确立了其作为将mRNA传递给大脑的非病毒平台的潜力。关键字:脂质纳米颗粒,mRNA,肽,脑输送,血脑屏障,神经元
微生物群落在各种环境中起关键作用。预测它们的功能和动力学是微生物生态学的关键目标,但是这些系统的详细描述可能是非常复杂的。一种处理这种复杂性的方法是诉诸于更粗糙的表示。几种方法试图以数据驱动的方式识别微生物物种的有用群体。最近的工作在从头发现时,使用像线性回归这样简单的方法来预测给定功能的粗略表示,对多个物种甚至单个这样的群体(Ensemble-Biterient优化(EQO)方法)进行了一些经验成功。将社区功能建模为单个物种贡献的线性组合似乎很重要。但是,确定生态系统的预测性过度的任务与预测功能的任务不同,并且可以想象,前者可以通过比后者更简单的方法来完成。在这里,我们使用资源竞争框架来设计一个模型,在该模型中,要发现的“正确”分组是良好的定义,并使用合成数据来评估和比较基于回归的三种方法,即先前提出的两个和我们介绍的两个方法。我们发现,即使函数明显非线性,基于回归的方法也可以恢复分组。该多组方法比单组EQO具有优势。至关重要的是,模拟器(线性)方法的表现可以胜过更复杂的方法。
在用于药物输送的各种靶向配体中,适体在近年来引起了很大的兴趣,因为与抗体相比,它们的尺寸较小,易于修饰和更好的批次到批量的一致性。另外,可以选择适体靶向已知甚至未知的细胞表面生物标志物。用于药物负荷,脂质体是最成功的载体,许多经FDA批准的配方基于脂质体。在本文中,审查了用于靶向药物输送的适体功能化脂质体。我们从相关的适体选择的描述开始,然后是将适体与脂质体和体内这种结合物的命运相结合的方法。然后审查了一些申请的示例。除了静脉注射全身传递并希望在目标部位积累,对于某些应用,还可以使适体/脂质体共轭物直接在目标组织(如肿瘤内注射)(例如通过粘附到角膜上)在眼表面上掉落。虽然先前的评论集中在癌症治疗上,但当前的评论主要涵盖了过去四年中的其他应用。最后,本文讨论了适体定位和一些未来研究机会的潜在问题。