摘要 口服抗糖尿病药二甲双胍已被证实在各种癌细胞系中具有抗肿瘤活性,与线粒体复合物 I 的抑制有关。然而,临床前研究一直难以证明这种抗肿瘤活性,其利用的二甲双胍浓度与标准抗糖尿病剂量可达到。研究表明,二甲双胍与抗高血压药物昔洛舍平联合使用,通过抑制单羧酸转运蛋白 (MCT)1/MCT4,可降低二甲双胍的治疗阈值并使癌细胞对杀伤敏感。这些药物之间的强相互作用可引起对转化细胞特有的合成致死性。这项初步研究旨在通过测量 PC3(粘附)和 THP-1(悬浮)癌细胞系中的细胞活力和细胞外乳酸来研究二甲双胍的抗肿瘤作用及其与昔洛舍平的协同关系。总体而言,PC3 细胞系对二甲双胍和昔罗舍平联合治疗或单独使用其中一种药物的治疗反应更好;然而,在两种细胞系中均未观察到合成致死。在两种细胞系中,二甲双胍和昔罗舍平之间的相互作用在细胞活力测定中并不具有统计学意义(p>0.05)。通过测量细胞外乳酸对 MCT1/MCT4 抑制的分析并不具有统计学意义(p>0.05),并且结果尚无定论。此外,在某些治疗组中,细胞系的性质(粘附或悬浮)具有统计学意义(p<0.05),这表明这可能在药物治疗的疗效中发挥作用。需要进一步研究以更好地了解二甲双胍和昔罗舍平合成致死以及昔罗舍平 MCT1/MCT4 抑制的潜在细胞机制。未来的研究应侧重于实现能够在体内表现出抗肿瘤作用的二甲双胍剂量。关键词:二甲双胍、昔罗舍平、THP-1、PC3、单羧酸转运蛋白、MCT1、MCT4、粘附细胞系、悬浮细胞系、前列腺癌、急性髓细胞白血病、抗肿瘤、合成致死。
2021 年 10 月,就在胡佛研究员和工作人员经过一年半的远程工作返回斯坦福大学校园仅一个月后,我们得以恰当地纪念我们尊敬的同事、美国第六十任国务卿乔治·P·舒尔茨的一生。过去和现在的研究员和国家政策领导人坐满了斯坦福纪念教堂的长椅。我们中的许多人分享了乔治作为导师、同事和朋友对斯坦福社区、国家和世界以及对我们每个人的影响的故事。第二天,我们破土动工建造了乔治·P·舒尔茨大楼,该大楼将于 2024 年初竣工,毗邻胡佛塔。这是一个美丽的时刻,我们有幸见到了乔治心爱的妻子夏洛特,她不幸在两个月后去世。我们知道乔治和夏洛特会对这个最先进的设施的进展感到高兴。在建筑设计上,该建筑将反映乔治作为政策思想家“伟大召集人”的声誉以及他对多学科合作的偏好。在我们这样的学术界,没有什么可以取代人际互动的价值,这种互动是由自由流动的思想交流推动的。这一事实在我们回到校园的第一年就得到了体现。正如您将在本报告中看到的,该奖学金在合作研究方面成果丰硕,为美国面临的一系列前所未有的挑战提出了政策建议。政府支出达到历史最高水平、供应链中断以及俄罗斯入侵乌克兰,导致了半个世纪以来最高的通货膨胀率和最昂贵的能源价格。我们的著名经济学家提出了如何在不引发深度衰退的情况下实现价格稳定的想法。在其他学科,研究员们强调,通过提高竞争力可以最好地解决国家的脆弱性。对于我们的教育专家来说,这意味着让年轻一代掌握成为富有成效和成功的劳动力所需的知识和技能。对于政策领导人来说,这意味着应对中国对全球秩序提出的挑战。在这方面,胡佛研究所组织了多学科专家小组,研究各种问题,包括中国在发展中国家的存在以及其积极部署数字货币和电子支付系统。胡佛研究团队还重点研究了美国如何与其在印度-太平洋地区的合作伙伴(特别是印度)进行最佳合作,以确保该地区保持自由、开放与和平。
乳腺癌是全球女性中最常见的恶性肿瘤,也是癌症相关死亡的主要原因。脑转移是晚期乳腺癌的一种严重并发症,由于血脑屏障 (BBB) 带来的挑战和转移细胞的侵袭性,脑转移显著恶化了预后 ( Raghavendra 和 Ibrahim,2024 )。乳腺癌脑转移的发展涉及多个步骤,包括癌细胞从原发肿瘤分离、侵入血液和在脑部定植 ( Ivanova 等人,2023 )。血脑屏障保护大脑免受有害物质的侵害,同时也限制了许多化疗药物的有效性。最近的研究已经确定了几种分子通路和基因突变,这些通路和基因突变有助于乳腺癌细胞穿透血脑屏障并随后在脑中生长。关键因素包括 HER2(人类表皮生长因子受体 2)和 BRCA(乳腺癌基因)突变,它们与更具侵袭性的疾病和更高的脑转移可能性有关(Fan 等人,2023 年;Kuksis 等人,2021 年)。本研究课题旨在强调乳腺癌脑转移治疗的最新进展,包括发现新的靶点或药物、临床前或临床试验中的新方法,以及针对已知药物和治疗方法的更深入见解。了解中枢神经系统转移的分子基础对于开发有效的治疗方法至关重要。脂质运载蛋白-2 (LCN2) 是一种铁转运蛋白,与乳腺癌脑转移 (BCBM) 的进展有关(Adler 等人,2023 年)。在原发性肿瘤中,LCN2 通过与基质金属蛋白酶 9 相互作用并促进上皮-间质转化,促进癌细胞增殖、血管生成和侵袭。在脑微环境中,LCN2 破坏血脑屏障,通过调节细胞行为来帮助肿瘤种植。Zhao 等人综述了 LCN2 在 BCBM 中的作用及其作为治疗靶点和生物标志物的潜力,表明针对 LCN2 可以改善 BCBM 患者的预后。细胞外囊泡 (EV) 是一种含有生物分子的小脂质双层囊泡,它通过将生物活性分子递送至受体细胞并调节信号转导和蛋白质表达在此过程中发挥关键作用。EV 被证实在调节脑转移免疫微环境中发挥关键作用,有望在免疫治疗和疾病诊断方面取得进展(Li et al.,2024)。Sakamoto 等人回顾了EVs促进乳腺癌脑转移的分子机制,并讨论了EV相关分子作为治疗靶点和早期诊断标志物的潜力。
第2级技术职业教师教育学士学位助理教授摘要:Balimbing(Averrhoa carambola)水果以其独特的星形和金色覆盖范围而闻名。果实在成熟过程中的组成差异很大。因此,这项研究旨在开发粉碎的巴利林(A. carambola)作为有效的食物增强剂。这项研究还确定了在不同的成熟度(未成熟和成熟)下粉碎的carambola水果酸味香料的酸水平。植物化学筛选是在巴利林(A. carambola)果实中进行的,以确定其化学成分,继发代谢产物和毒性。该研究利用了一种描述性研究方法。这种设计被认为是适当的,因为在这项研究中,研究人员可以建立一个实验,以确定粉碎的A. carambola的pH值水平在不同的成熟度水平,成熟和未成熟的情况下。进行了实验,以确定粉碎的粉状的定量和定性特征。设置由两个成熟度组成:未熟和成熟。每个成熟度级别具有三个重复。每个复制均包含20克的质量。评估了所有重复的定量特征,例如pH水平。的发现表明,A. carambola果实的pH值在其成熟度方面有所不同,成熟的绿色水果(未成熟)和成熟的A. carambola水果的平均pH值分别为pH。发现,发达的A. carambola食品增强剂在质地,外观和风味/味道方面表现出非常可接受的结果。同时将其香气描述为可接受的。此外,A. carambola的水分,条带和pH值在0.01显着性水平上相对于其成熟度(成熟和未成熟)的显着差异。关键字:粉碎的粉状,食品增强剂,开发,菲律宾I.介绍不同的工业创新,例如在食品制造行业中,以及人们创造由当地资源制造的新产品的性质,研究人员决心创建一种由当地发现的水果制成的潜在食品增强剂,该产品是本地发现的,是该地区的本地。balimbing(averrhoa carambola),通常称为星级水果,是一种坚固的椭圆形的热带水果,带有类似于星星的山脊。原始的Balimbing的颜色是绿色的,但成熟后最终会变成深黄色。它产生的味道是甜酸的混合物。Johnson和Peterson和Hartwig and McDaniel(2010)进行的研究表明,酸味的化学作用似乎相对简单,因为它仅与酸相关。酸是在烘焙食品,饮料,糖果,明胶甜点,果酱,果冻,
美国面临着一个不断变化的挑战,即非法药物供应中赛拉嗪的存在日益增多,主要但并非唯一与芬太尼结合使用。因此,根据我作为国家药物管制政策主任获得的授权,我于 2023 年 4 月 12 日将掺假或与赛拉嗪相关的芬太尼 (FAAX) 指定为新兴药物威胁。拜登-哈里斯政府召集了一个联邦机构间芬太尼掺假或与赛拉嗪相关的机构间工作组 (FAAX-IWG),并已采取重大行动,更好地保护美国人免受这一威胁。国家药物管制政策办公室 (ONDCP) 于 2023 年夏季协调并发布了针对这一威胁的全面政府范围应对计划,概述了需要采取的高优先级行动。本实施报告描述了这些有希望的努力,它们将对保护美国人的健康和安全产生直接和长期影响。赛拉嗪是一种兽用镇静剂,未获准用于人类。这种药物不受《联邦管制物质法》的监管,历史上人们认为这种药物的非法使用风险较低。然而,当与芬太尼一起服用时,个人可能会遭受严重后果,包括极度镇静和深层皮肤和软组织损伤。此外,长期接触 FAAX 的人经常会遇到难以克服的戒断症状,与单独戒断阿片类药物相比,这可能带来独特的治疗挑战。虽然有些使用阿片类药物的人会寻求赛拉嗪,而另一些人则会避免使用,但研究表明,与仅使用阿片类药物的人相比,将阿片类药物与兴奋剂结合使用的人更容易遇到 FAAX。因此,除了治疗赛拉嗪带来的危害外,接触赛拉嗪的人可能还需要治疗其他使用障碍。幸运的是,有新兴的协议可以防止与赛拉嗪有关的过量用药,缓解戒断症状,并为长期接触 FAAX 的阿片类药物使用障碍 (OUD) 患者管理有效的治疗和康复过程。随着越来越多的州和地方卫生当局、医院和治疗中心开始对赛拉嗪进行检测,这种不断演变的合成药物威胁的现实在最初的新兴威胁指定之后变得更加清晰。这现在确实是一个国家威胁。正如下面的实施报告所概述的那样,联邦机构正在采取多项措施来支持这些迫切需要的拯救生命的努力。我强烈鼓励公共卫生和公共安全机构加大力度监测这一威胁,并确保每个受到赛拉嗪影响的人都能得到他们所需的帮助。
放射治疗和化疗药物在癌症治疗中的应用已显示出明显的抗肿瘤作用,但也有局限性(由于对肿瘤细胞缺乏选择性而产生显著的副作用、产生耐药性以及发生继发性恶性肿瘤)。因此,人们大力推动替代疗法(如免疫疗法)的研究和开发,以寻找对转化细胞具有更高特异性且非特异性毒性更低的疗法。免疫疗法的优势在于其特性(识别细胞膜上的特定靶标),这些特性完全独立于化疗和放疗所基于的参数。这导致副作用的叠加和对化疗和放疗有抗性的细胞克隆的细胞毒性不受影响。今天,受埃尔利希“魔法子弹”概念的启发,最有前途的研究方法之一是将药理活性分子与载体(主要是抗体)连接起来,以便选择性地递送到靶细胞。这些杂合物主要应用于癌症治疗领域的研究 [ 1 ]。因此,大多数免疫治疗方法都集中于针对癌细胞表面的特定抗原。这种方法的一个基本要求是靶分子局限于要破坏的细胞群,或者至少靶分子不存在于干细胞或其他对生物体生存至关重要的细胞类型中。抗体是最常用的载体,因为它们在血液中稳定,并且对靶抗原具有亲和力和亲和力。许多不同的分子已被用作毒性部分;研究最多的是毒素(细菌或植物)、药物、放射性核素和人类酶。最常用的细菌毒素是假单胞菌外毒素 A (PE) [ 2 ] 和白喉毒素 (DT) [ 3 ],它们通过 NAD 依赖的延长因子 2 的 ADP 核糖基化抑制翻译,导致细胞死亡。最常用于治疗目的的植物毒素是核糖体失活蛋白 (RIP) [ 4 , 5 ],主要是蓖麻毒素 [ 6 ] 和皂草毒素 [ 7 ]。RIP 也称为多核苷酸:腺苷糖基化酶 [ 8 ],因为它们能够从许多不同的多核苷酸底物中去除腺嘌呤,通过多种机制导致细胞死亡 [ 9 – 11 ]。本期特刊汇集了五篇科学文章,重点介绍了基于抗体的毒素和其他活性分子对抗恶性细胞的知识进展,从而揭示了它们在抗癌治疗中的潜力。如上所述,识别/选择有效靶标是针对特定癌症进行免疫治疗的战略重要行动。连接蛋白细胞粘附分子 4 (NECTIN4) 是皮肤鳞状细胞癌的潜在治疗靶标,第二种最常见的皮肤癌。在大多数皮肤鳞状细胞癌研究组织和 A431 细胞系的质膜上均发现了 NECTIN4 的表达。NECTIN4 被证实在调节细胞间相互作用、皮肤鳞状细胞癌细胞的迁移和增殖中发挥作用 [12]。前列腺特异性膜抗原 (PSMA) 是一种可靠的标记物,非常适合前列腺癌 (PCa) 的成像和治疗。抗 PSMA 抗体的有效性
本白皮书是根据我们与中小微企业部发展专员于 2018 年 12 月 3 日签订的聘用合同参考号 21/DCMSME/TCSP/CON/TCM/2016/TR(“供应商服务合同”)中规定的基础编写的。本白皮书中的任何内容均不构成估价或法律建议。除服务合同中规定的有限情况外,我们尚未核实在工作过程中获得的任何信息的可靠性或准确性。本白皮书的受益人是中小微企业部发展专员、以及我们已书面同意视为服务合同当事方的其他各方(统称“受益人”)。本白皮书的目的不是为了造福除中小微企业部发展专员/受益人之外的任何人。在编写本白皮书时,我们没有考虑除中小微企业发展专员、中小微企业部/受益人之外任何人的利益、需求或情况,尽管我们可能已经意识到其他人可能会阅读本白皮书。我们仅为中小微企业发展专员、中小微企业部/受益人编写了本白皮书。任何一方希望出于任何目的或在任何情况下取得针对毕马威咨询服务私人有限公司(中小微企业发展专员、中小微企业部/受益人除外)的权利,则本白皮书并不适合作为依据。除中小微企业发展专员、中小微企业部/受益人之外的任何一方,如果获得本白皮书或副本并选择依赖本白皮书(或其任何部分),则风险由其自行承担。在法律允许的最大范围内,毕马威咨询服务私人有限公司不承担任何责任。 Ltd 不承担任何责任,也不会对除中小微企业发展专员、中小微企业部/受益人以外的任何一方承担与本白皮书有关的责任。特别是,在不限制上述一般性声明的情况下,由于我们仅为中小微企业发展专员、中小微企业部/受益人编写了本白皮书,因此本白皮书并非为任何其他地方当局/信托/等编写,也并非为可能对本白皮书中讨论的问题感兴趣的任何其他个人或组织编写,例如全科医生/在各自行业工作的人员或为在各自行业运营的人员提供商品或服务的人员。请注意,服务合同使本白皮书在中小微企业发展专员、中小微企业部/受益人和我们之间保密。我们已将本白皮书发布给中小微企业发展专员、中小微企业部/受益人,前提是未经我们事先书面同意,不得全部或部分复制、引用或披露。对本白皮书进行任何超出服务合同允许范围的披露都将严重损害本事务所的商业利益。请求我们同意任何此类更广泛披露可能会导致我们同意部分取消这些披露限制。如果中小微企业发展专员、中小微企业部/受益人收到根据相关法律法规披露我们工作成果或本白皮书的请求,考虑到这些可诉诸法律的披露限制,中小微企业发展专员、中小微企业部/受益人应告知我们,并且在未事先咨询毕马威咨询服务私人有限公司并考虑毕马威咨询服务私人有限公司可能做出的任何陈述的情况下,不应根据任何此类请求进行披露。
良好的内部:纽约时报畅销书作家贝基·肯尼迪(Becky Kennedy)博士在这本开创性的书中的一种革命性方法,贝基·肯尼迪(Becky Kennedy)博士分享了她创新的育儿方法,该方法优先于纠正措施,使父母有能力提高韧性和情感健康的孩子。父母养育人类的指南,而不是传统的育儿方法通常集中于塑造行为,但贝基博士的方法强调建立孩子们生活所需的技能并满足他们复杂的情感需求。内在的同情和自信的哲学为父母提供了一种全面的资源,以寻求一种新的方式来抚养孩子,同时使他们一生的自我调节,自信和韧性。对共同挑战的可行策略本书解决了诸如兄弟姐妹竞争,分离焦虑,发脾气等特定方案,为父母提供了实用的解决方案来应对这些挑战。著名的育儿专家贝基·肯尼迪(Becky Kennedy)博士一直在开创性的方法上引发了育儿的一场革命,将联系优先于校正优先。数以百万计的父母采用了她的模型,该模型着重于建筑技能和满足复杂的情感需求,而不是简单地塑造行为。在她的书《良好的内心》中,贝基博士分享了她的哲学,并采用了可行的策略,以帮助父母从不确定性和自我塑造过渡到信心和坚固的领导力。她的方法优先考虑建立牢固的关系而不是塑造行为,承认儿童的复杂情感需求。此外,父母的自我保健至关重要。良好的内部:贝基·肯尼迪(Becky Kennedy)博士贝基·肯尼迪(Becky Kennedy)博士(著名的育儿专家)的开创性方法一直在率先进行育儿革命,重点是与孩子建立联系而不是纠正他们。在她的书《很好的内在》中,贝基博士分享了她的育儿理念,并具有可行的策略,以帮助父母从不确定性和自我塑造到信心和坚固的领导力过渡。良好的内部提供了转变的育儿原则和针对特定情况的故障排除,包括兄弟姐妹竞争,分离焦虑,发脾气等。这本书是一种全面的资源,对于父母来说,寻求一种新的方式来抚养孩子的同时为他们培养一生的自我调节,自信和韧性。评论者赞扬贝基博士的创新工作,挑战了继承的信念和行为,从而改变了家庭动态的范式。她的做法使父母成为他们想要成为的父母,并在此过程中为自己提供了恩典。这本书是从婴儿期到成年期的每个发展阶段的迷人且及时的资源。大多数父母都同意,我们扮演的最关键的角色之一也是我们接受最少培训的角色,导致我们经常跟随父母的脚步 - 有时不是那么好的例子。贝基·肯尼迪(Becky Kennedy)博士提供了一种新的育儿方法,提供了明确的指导和现实生活中的示例,以在她的书中善良的书中用爱和同情心设定界限。正如理查德·施瓦茨(Richard Schwartz)博士指出的那样,这本书在抚养自己的孩子时将是无价的,他很感激他们也将拥有它。根据编码女童的创始人Reshma Saujani的说法,Becky Kennedy博士的话尤其及时,当父母延长时,提供实用的策略和基本支持。这本书是智慧的宝库,使其成为未来几年的必不可少的资源。亚当·格兰特(Adam Grant)赞扬肯尼迪(Kennedy)博士在确认我们的直觉和挑战我们重新考虑我们的反应之间取得了完美的平衡。这本书的内在:成为您想要成为的父母的指南(2022)是由临床心理学家贝基·肯尼迪(Becky Kennedy)博士撰写的,并提供了一种基于依恋理论和内部家庭系统模型的独特方法。它以这样的想法为中心:每个人都有良好的内部,优先考虑与后果的联系以及对育儿的长期看法。基于Harpercollins 2022版,肯尼迪博士的内部分为两部分。第一部分探讨了她的个人育儿原则,并建议读者如何应用它们,而第二部分则研究建立联系和解决特定育儿问题的策略。这本书始于内部善良的原则,该原则假设每个人 - 孩子,父母,甚至不顺序的人 - 都有善良的核心。父母可以通过考虑破坏性行为的原因来使用肯尼迪博士的“最慷慨的解释”方法。该原则强调着眼于更大的前景,而不是专注于个人行为。第二个原理是多样性,它允许接受两个不同的现实可以共存。相反,父母应该专注于与孩子建立联系。这种理解对于包括亲子纽带在内的健康关系至关重要。它使父母能够设定界限,同时仍然承认孩子的感受和需求。第三个原则是了解一个人的工作,强调在家庭体系中明确角色和责任的重要性。孩子有探索和学习的作用,而父母则负责通过设定界限并提供验证和同理心来维持自己的身体和情感安全。肯尼迪博士还强调了早期在塑造儿童对自己和世界的看法方面的重要性。她借鉴了依恋理论和内部家庭系统模型,以解释儿童对联系的需求,以及他们如何根据与护理人员的早期经历发展自我意识。第五原理强调神经可塑性,这使大脑可以一生重新织造和重新学习。这意味着修复过去的伤害或断开并改变自己的记忆体验永远不会太晚。第六原则优先考虑儿童的韧性而不是避免痛苦和促进幸福。韧性使个人能够应对广泛的情绪并有效地应对挑战。第七原则指出,可以通过考虑其背后的潜在动机和需求来理解所有行为,而不是仅仅专注于表面层面的行为。育儿不仅在于管理行为,还涉及理解和解决驱动他们的潜在情绪。识别和解决行为的根本原因会导致长期的积极变化,而仅通过行为修改而暂时的缓解只能提供短暂的平静感。原则八强调了承认和减少儿童羞耻感的重要性,如果不受限制,这可能会导致孤独和适应不良的行为。诚实在讨论困难的话题或回答孩子的问题时也至关重要。令人恐惧的不是信息本身,而是缺乏知识和成人的存在。通过补充自己的情感资源,他们可以为自己的孩子建立强烈的自我意识,并保持良好的态度并受到监管,以提供有效的育儿。建筑连接的概念对于肯尼迪博士的方法至关重要。她将其比作货币连接的情感银行帐户。父母必须不断通过游戏,问题和其他策略来补充此帐户,以培养孩子中强烈的自我意识。肯尼迪博士还讨论了儿童中的特定共同行为,例如不聆听,发脾气,兄弟姐妹的竞争,粗鲁,抱怨,撒谎,恐惧,恐惧,焦虑,犹豫,害羞,沮丧,饮食习惯,同意,泪水,泪水,完美主义,完美主义,分离焦虑和睡眠问题。她将这些行为视为发育正常,甚至健康,每种行为都是对孩子的潜在情绪失调的线索。此外,肯尼迪博士讨论了“深深的感觉”(DFKS),他们经历了比其他人更加激烈的情绪,并以更长,更频繁的发脾气做出反应。这些孩子需要独特的策略,但最重要的是,他们需要不断地保证和增强他们的内在善良,从而有爱心的成年人。总而言之,肯尼迪博士强调,她的方法“良好的内在”集中在两个关键原则上:了解两个真理可以共存,并承认所有行为都是试图满足情感需求的尝试。通过拥抱这些想法,父母可以在与孩子的互动中变得更加扎根和同情。
[1] O. Oktarifaldi、IA Marta、AW Nugroho、VJ Hardi 和 S. Utomo,“Keterampilan Gerak Dasar Kelompok Usia 7 sampai 9 Tahun siswa Sekolah Dasar”,Jendela Olahraga,卷。 9、不。 1,第 10-23 页,2024 年。 [2] R. Fika,“Jigsaw 和 STAD(学生团队成就部门)合作学习模型在药物数学方面的有效性”,J. Adv. 1,第 10-23 页,2024 年。医药。教育。资源。四月至六月,卷。 10、不。 2020 年 2 月。 [3] M. Antonioli、C. Blake 和 K. Sparks,“增强现实在教育中的应用”,J. Technol。螺柱。 ,第 96–107 页,2014 年。[4] K. Umam、R. Fika、SO Manullang 和 E. Fatmawati,“艾滋病毒/艾滋病政策策略的文献计量分析”,HIV Nurs.,第 23 卷,第 3 期,第 376–387 页,2023 年。[5] R. Fika,“Dwi Farma 药学院使用拼图合作学习模式提高药学数学活动和学习成果”,Futur. Med. Educ. J.,第 7 卷,第 4 期,第 36–46 页,2017 年。[6] NF Saidin、NDA Halim 和 N. Yahaya,“增强现实教育研究回顾:优势和应用”,Int. Educ. Stud.,第 8 卷,第 3 期,第 476–487 页,2017 年。 13,第 1-8 页,2015 年。 [7] E. Wahyuanto,“Pembaruan Regulasi Pos Dalam Upaya Modernisasi dan Optimalisasi Layanan Pos Indonesia”,Syntax Lit。 J.伊尔姆.印度尼西亚人。 ,卷。 7、没有。 2,第 2391–2397 页,2022 年。 [8] K. Muhammad, N. Khan, M.-Y。 Lee、AS Imran 和 M. Sajjad,“未来的学校:关于增强现实作为小学生教育工具的有效性的综合研究”,Appl。科学。 ,卷。 11、没有。 11,p。 5277,2021 年。[9] E. Wahyuanto 和 KG Marwan,“数字领导力、薪酬和工作积极性对日惹多媒体中学 (MMTC) 教育者表现的影响”,Remit. Rev.,第 8 卷,第 4 期,2023 年。[10] T. Khan、K. Johnston 和 J. Ophoff,“增强现实应用对学生学习积极性的影响”,Adv. human-computer Interact.,第 2019 卷,2019 年。[11] JA Delello、RR McWhoRteR 和 KM Camp,“将增强现实融入高等教育:对学生感知的多学科研究”,J. Educ. Multimed. Hypermedia,第 24 卷,第 4 期。 3,第 209–233 页,2015 年。[12] N. Pellas、P. Fotaris、I. Kazanidis 和 D. Wells,“增强中小学教育的学习体验:对增强现实游戏化学习最新趋势的系统回顾”,《虚拟现实》,第 23 卷,第 4 期,第 329–346 页,2019 年。[13] M. Romano、P. Díaz 和 I. Aedo,“授权教师创造增强现实体验:对教育体验的影响”,《互动学习环境》,第 31 卷,第 4 期,第 529–532 页,2019 年。 3,第 1546-1563 页,2023 年。[14] B. Kraut 和 J. Jeknić,“通过增强现实 (AR) 改善教育体验”,2015 年第 38 届国际信息和通信技术、电子学和微电子学大会(MIPRO),IEEE,2015 年,第 755-760 页。[15] AM Baabdullah、AA Alsulaimani、A. Allamnakhrah、AA Alalwan、YK Dwivedi 和 NP Rana,“增强现实 (AR) 的使用和电子学习成果的发展:对学生电子学习体验的实证评估,”Comput. Educ.,第 177 卷,第 104383 页,2022 年。[16] INM Bistaman、SZS Idrus 和 S. Abd Rashid,“马来西亚玻璃市小学教育中增强现实技术的应用”,载于《物理学杂志:会议系列》,IOP 出版,2018 年,第 12064 页。[17] C. Diaz、M. Hincapié 和 G. Moreno,“教育增强现实应用中的内容类型如何影响学习体验,”Procedia Comput. Sci.,第 177 卷,第 104383 页,2022 年。 75,第 205-212 页,2015 年。[18] P. Toledo-Morales 和 JM Sanchez-garcıa,“将增强现实用作社会科学教育资源”,土耳其在线远程教育杂志,第 19 卷,第 3 期,第 38-52 页,2018 年。[19] DP Kaur、A. Mantri 和 B. Horan,“在工程教育中使用增强现实进行互动学习以增强学生积极性”,Procedia Comput. Sci.,第 172 卷,第 881-885 页,2020 年。[20] T. Lham、P. Jurmey 和 S. Tshering,“增强现实作为课堂教学工具:教师和学生的态度”,亚洲教育社会研究杂志,第 12 卷,第 3 期, 4,第 27–35 页,2020 年。[21] J. Yip、S.-H. Wong、K.-L. Yick、K. Chan 和 K.-H. Wong,“使用增强现实视频提高课堂教学质量”,Comput. Educ.,第 128 卷,第 88–101 页,2019 年。[22] M. Videnovik、V. Trajkovik、LV Kiønig 和 T. Vold,“使用增强现实教育游戏提高学习体验质量”,Multimed. Tools Appl.,第 79 卷,第 33 期,第 23861–23885 页,2020 年。[23] A.-J. Moreno-Guerrero、S. Alonso García、M. Ramos Navas-Parejo、MN Campos-Soto 和 G. Gomez Garcia,“增强现实作为改善体育课堂学习的资源”,《国际环境与公共卫生研究杂志》,第 17 卷,第 10 期,第 3637 页,2020 年。[24] E. Wahyuanto、E. Giantoro、JDT Widodo 和 R. Yuniar,“头脑风暴法在电视纪录片《不一样的生活》一集制作中开发创意的应用”,《科技教育人文》,第 1 卷。 7,第 54-65 页,2024 年。 [25] R. Gurevych、A. Silveistr、M. Мokliuk、I. Shaposhnikova、G. Gordiichuk 和 S. Saiapina,“在高等教育机构中使用增强现实技术”,Postmod。开口,卷。 12、没有。 2,第 109–132 页,2021 年。 [26] E. Wahyuanto,“KINERJA DOSEN DITINJAU DARI KEPEMIMPINAN,KOMPENSASI DAN MOTIVASI KERJA PADA SEKOLAH TINGGI 多媒体‘MMTC’日惹。”雅加达东北大学,2023 年。[27] S.-J。卢和Y.-C。 Liu,“整合增强现实技术以加强儿童在海洋教育中的学习”,环境教育研究,第 21 卷,第 4 期,第 525-541 页,2015 年。“马来西亚玻璃市州小学教育中增强现实技术的应用”,载《物理学杂志:会议系列》,IOP 出版,2018 年,第 12064 页。[17] C. Diaz、M. Hincapié 和 G. Moreno,“教育增强现实应用中的内容类型如何影响学习体验”,Procedia Comput. Sci.,第 75 卷,第 205-212 页,2015 年。[18] P. Toledo-Morales 和 JM Sanchez-garcıa,“增强现实在社会科学中用作教育资源”,土耳其在线远程教育杂志,第 19 卷,第 3 期,第 38-52 页,2018 年。[19] DP Kaur、A. Mantri 和 B. Horan,“在工程教育中使用增强现实进行互动学习,提高学生的积极性”,Procedia Comput. Sci. ,第 172 卷,第 881–885 页,2020 年。[20] T. Lham、P. Jurmey 和 S. Tshering,“增强现实作为课堂教学工具:教师和学生的态度”,Asian J. Educ. Soc. Stud. ,第 12 卷,第 4 期,第 27–35 页,2020 年。[21] J. Yip、S.-H. Wong、K.-L. Yick、K. Chan 和 K.-H. Wong,“通过使用增强现实视频提高课堂教学质量”,Comput. Educ. ,第 12 卷,第 4 期,第 27–35 页,2020 年。 128,第 88–101 页,2019 年。[22] M. Videnovik、V. Trajkovik、LV Kiønig 和 T. Vold,“使用增强现实教育游戏提高学习体验质量”,Multimed. Tools Appl.,第 79 卷,第 33 期,第 23861–23885 页,2020 年。[23] A.-J. Moreno-Guerrero、S. Alonso García、M. Ramos Navas-Parejo、MN Campos-Soto 和 G. Gomez Garcia,“增强现实作为改善体育课堂学习的资源”,Int. J. Environ. Res. Public Health,第 17 卷,第 10 期,第3637,2020 年。[24] E. Wahyuanto、E. Giantoro、JDT Widodo 和 R. Yuniar,“头脑风暴法在电视纪录片《不一样的生活》一集制作中开发创意的应用”,《科技教育人文》,第 7 卷,第 54–65 页,2024 年。[25] R. Gurevych、A. Silveistr、M. Мokliuk、I. Shaposhnikova、G. Gordiichuk 和 S. Saiapina,“在高等教育机构中使用增强现实技术”,《Postmod. Openings》,第 12 卷,第 1 期,第 175–185 页。 2,第 109–132 页,2021 年。 [26] E. Wahyuanto,“KINERJA DOSEN DITINJAU DARI KEPEMIMPINAN,KOMPENSASI DAN MOTIVASI KERJA PADA SEKOLAH TINGGI 多媒体‘MMTC’日惹。”雅加达东北大学,2023 年。[27] S.-J。卢和Y.-C。刘,“整合增强现实技术,增强儿童在海洋教育中的学习”,Environ。教育。资源。 ,卷。 21、没有。 4,第 525–541 页,2015 年。“马来西亚玻璃市州小学教育中增强现实技术的应用”,载《物理学杂志:会议系列》,IOP 出版,2018 年,第 12064 页。[17] C. Diaz、M. Hincapié 和 G. Moreno,“教育增强现实应用中的内容类型如何影响学习体验”,Procedia Comput. Sci.,第 75 卷,第 205-212 页,2015 年。[18] P. Toledo-Morales 和 JM Sanchez-garcıa,“增强现实在社会科学中用作教育资源”,土耳其在线远程教育杂志,第 19 卷,第 3 期,第 38-52 页,2018 年。[19] DP Kaur、A. Mantri 和 B. Horan,“在工程教育中使用增强现实进行互动学习,提高学生的积极性”,Procedia Comput. Sci. ,第 172 卷,第 881–885 页,2020 年。[20] T. Lham、P. Jurmey 和 S. Tshering,“增强现实作为课堂教学工具:教师和学生的态度”,Asian J. Educ. Soc. Stud. ,第 12 卷,第 4 期,第 27–35 页,2020 年。[21] J. Yip、S.-H. Wong、K.-L. Yick、K. Chan 和 K.-H. Wong,“通过使用增强现实视频提高课堂教学质量”,Comput. Educ. ,第 12 卷,第 4 期,第 27–35 页,2020 年。 128,第 88–101 页,2019 年。[22] M. Videnovik、V. Trajkovik、LV Kiønig 和 T. Vold,“使用增强现实教育游戏提高学习体验质量”,Multimed. Tools Appl.,第 79 卷,第 33 期,第 23861–23885 页,2020 年。[23] A.-J. Moreno-Guerrero、S. Alonso García、M. Ramos Navas-Parejo、MN Campos-Soto 和 G. Gomez Garcia,“增强现实作为改善体育课堂学习的资源”,Int. J. Environ. Res. Public Health,第 17 卷,第 10 期,第3637,2020 年。[24] E. Wahyuanto、E. Giantoro、JDT Widodo 和 R. Yuniar,“头脑风暴法在电视纪录片《不一样的生活》一集制作中开发创意的应用”,《科技教育人文》,第 7 卷,第 54–65 页,2024 年。[25] R. Gurevych、A. Silveistr、M. Мokliuk、I. Shaposhnikova、G. Gordiichuk 和 S. Saiapina,“在高等教育机构中使用增强现实技术”,《Postmod. Openings》,第 12 卷,第 1 期,第 175–185 页。 2,第 109–132 页,2021 年。 [26] E. Wahyuanto,“KINERJA DOSEN DITINJAU DARI KEPEMIMPINAN,KOMPENSASI DAN MOTIVASI KERJA PADA SEKOLAH TINGGI 多媒体‘MMTC’日惹。”雅加达东北大学,2023 年。[27] S.-J。卢和Y.-C。刘,“整合增强现实技术,增强儿童在海洋教育中的学习”,Environ。教育。资源。 ,卷。 21、没有。 4,第 525–541 页,2015 年。和 B. Horan,“在工程教育中使用增强现实进行互动学习以增强学生积极性”,Procedia Comput. Sci.,第 172 卷,第 881–885 页,2020 年。[20] T. Lham、P. Jurmey 和 S. Tshering,“增强现实作为课堂教学工具:教师和学生的态度”,Asian J. Educ. Soc. Stud.,第 12 卷,第 4 期,第 27–35 页,2020 年。[21] J. Yip、S.-H. Wong、K.-L. Yick、K. Chan 和 K.-H. Wong,“通过使用增强现实视频提高课堂教学质量”,Comput. Educ.,第 12 卷,第 4 期,第 27–35 页,2020 年。 128,第 88–101 页,2019 年。[22] M. Videnovik、V. Trajkovik、LV Kiønig 和 T. Vold,“使用增强现实教育游戏提高学习体验质量”,Multimed. Tools Appl.,第 79 卷,第 33 期,第 23861–23885 页,2020 年。[23] A.-J. Moreno-Guerrero、S. Alonso García、M. Ramos Navas-Parejo、MN Campos-Soto 和 G. Gomez Garcia,“增强现实作为改善体育课堂学习的资源”,Int. J. Environ. Res. Public Health,第 17 卷,第 10 期,第3637,2020 年。[24] E. Wahyuanto、E. Giantoro、JDT Widodo 和 R. Yuniar,“头脑风暴法在电视纪录片《不一样的生活》一集制作中开发创意的应用”,《科技教育人文》,第 7 卷,第 54–65 页,2024 年。[25] R. Gurevych、A. Silveistr、M. Мokliuk、I. Shaposhnikova、G. Gordiichuk 和 S. Saiapina,“在高等教育机构中使用增强现实技术”,《Postmod. Openings》,第 12 卷,第 1 期,第 175–185 页。 2,第 109–132 页,2021 年。 [26] E. Wahyuanto,“KINERJA DOSEN DITINJAU DARI KEPEMIMPINAN,KOMPENSASI DAN MOTIVASI KERJA PADA SEKOLAH TINGGI 多媒体‘MMTC’日惹。”雅加达东北大学,2023 年。[27] S.-J。卢和Y.-C。刘,“整合增强现实技术,增强儿童在海洋教育中的学习”,Environ。教育。资源。 ,卷。 21、没有。 4,第 525–541 页,2015 年。和 B. Horan,“在工程教育中使用增强现实进行互动学习以增强学生积极性”,Procedia Comput. Sci.,第 172 卷,第 881–885 页,2020 年。[20] T. Lham、P. Jurmey 和 S. Tshering,“增强现实作为课堂教学工具:教师和学生的态度”,Asian J. Educ. Soc. Stud.,第 12 卷,第 4 期,第 27–35 页,2020 年。[21] J. Yip、S.-H. Wong、K.-L. Yick、K. Chan 和 K.-H. Wong,“通过使用增强现实视频提高课堂教学质量”,Comput. Educ.,第 12 卷,第 4 期,第 27–35 页,2020 年。 128,第 88–101 页,2019 年。[22] M. Videnovik、V. Trajkovik、LV Kiønig 和 T. Vold,“使用增强现实教育游戏提高学习体验质量”,Multimed. Tools Appl.,第 79 卷,第 33 期,第 23861–23885 页,2020 年。[23] A.-J. Moreno-Guerrero、S. Alonso García、M. Ramos Navas-Parejo、MN Campos-Soto 和 G. Gomez Garcia,“增强现实作为改善体育课堂学习的资源”,Int. J. Environ. Res. Public Health,第 17 卷,第 10 期,第3637,2020 年。[24] E. Wahyuanto、E. Giantoro、JDT Widodo 和 R. Yuniar,“头脑风暴法在电视纪录片《不一样的生活》一集制作中开发创意的应用”,《科技教育人文》,第 7 卷,第 54–65 页,2024 年。[25] R. Gurevych、A. Silveistr、M. Мokliuk、I. Shaposhnikova、G. Gordiichuk 和 S. Saiapina,“在高等教育机构中使用增强现实技术”,《Postmod. Openings》,第 12 卷,第 1 期,第 175–185 页。 2,第 109–132 页,2021 年。 [26] E. Wahyuanto,“KINERJA DOSEN DITINJAU DARI KEPEMIMPINAN,KOMPENSASI DAN MOTIVASI KERJA PADA SEKOLAH TINGGI 多媒体‘MMTC’日惹。”雅加达东北大学,2023 年。[27] S.-J。卢和Y.-C。刘,“整合增强现实技术,增强儿童在海洋教育中的学习”,Environ。教育。资源。 ,卷。 21、没有。 4,第 525–541 页,2015 年。Giantoro、JDT Widodo 和 R. Yuniar,“头脑风暴法在电视纪录片《不一样的生活》一集制作中创意开发中的应用”,Tech。教育。人性化。 , 第卷7,页54–65,2024 年。[25] R. Gurevych、A. Silveistr、M. Мokliuk、I. Shaposhnikova、G. Gordiichuk 和 S. Saiapina,“在高等教育机构中使用增强现实技术”,Postmod。开幕式,第卷12,没有。 2,页109–132,2021 年。[26] E. Wahyuanto,“从领导力、薪酬和工作积极性评估日惹多媒体学院‘MMTC’讲师的表现”。雅加达国立大学,2023 年。[27] S.-J. Lu 和 Y.-C.刘,“整合增强现实技术以增强儿童的海洋教育学习”,环境。教育。决议, 第卷21,没有。 4,页525–541,2015年。Giantoro、JDT Widodo 和 R. Yuniar,“头脑风暴法在电视纪录片《不一样的生活》一集制作中创意开发中的应用”,Tech。教育。人性化。 , 第卷7,页54–65,2024 年。[25] R. Gurevych、A. Silveistr、M. Мokliuk、I. Shaposhnikova、G. Gordiichuk 和 S. Saiapina,“在高等教育机构中使用增强现实技术”,Postmod。开幕式,第卷12,没有。 2,页109–132,2021 年。[26] E. Wahyuanto,“从领导力、薪酬和工作积极性评估日惹多媒体学院‘MMTC’讲师的表现”。雅加达国立大学,2023 年。[27] S.-J. Lu 和 Y.-C.刘,“整合增强现实技术以增强儿童的海洋教育学习”,环境。教育。决议, 第卷21,没有。 4,页525–541,2015年。
微生物是专利法中的灰色地带吗?本文深入探讨了微生物专利的复杂性,强调了促进生物技术创新与公众获取发明之间的矛盾。它强调了有效的专利制度对于研发和确保公众获取的重要性。《工业产权法》19.039 及其规定经过仔细审查,揭示了微生物专利性的“灰色地带”。INAPI 最近更新了其指南,以澄清只要满足特定要求(包括新颖性、创造性水平和工业应用),以及充分描述和解决技术问题,天然微生物无需基因改造即可获得专利。该机构将微生物定义为单细胞生物,包括细菌、真菌、藻类、原生动物和植物或动物细胞,可在实验室中复制和操作。为了确保可重复性和技术充分性,Inapi 要求专利申请人将微生物样本存放在国际保藏机构,例如《布达佩斯条约》认可的机构,并在描述性记忆、权利要求和图表中包括对该存放的引用。印度的几家私营制药公司和研究机构正在为真菌、细菌和病毒等微生物申请专利。然而,由于对术语和法规清晰度的担忧,人们对为这些生命形式申请专利的合理性一直存在争议。本文研究了与微生物相关的专利制度的发展,探讨了为具有大量人为干预的转基因生物提供法定保护的可能性,并强调了对“微生物”进行普遍接受的定义的需求。在印度,专利法允许根据《与贸易有关的知识产权协议》为某些生命形式申请专利。然而,围绕“微生物”一词的争议一直存在,因为它尚未得到明确的定义。本文还探讨了通过专利促进技术创新和技术转让的重要性,以及它们在刺激商业效用和增长方面的作用。此外,它还强调了政策制定者需要在保护发明和防止不必要的侵犯之间取得平衡,特别是在生物技术和制药行业进步的背景下。规范生物实验和创新的法律仍然不完善。这部分是由于各国在世界贸易组织的总体规定下的经济和道德地位不同。争论的焦点是微生物保护的限度,这引发了关于专利性的问题。《与贸易有关的知识产权协议》第 27 条承认微生物是可获得专利的主体,导致许多国家采用国内专利法。专利授予独家权利,以换取对发明的全面披露,允许发明人或受让人在一定时期内控制其使用。授予专利必须满足三个标准:新颖性、非显而易见性和实用性。这些要求在《欧洲专利公约》中概述,并在各国的专利制度中得到体现。《与贸易有关的知识产权协议》旨在通过有效保护知识产权来减少贸易扭曲。第 27 条规定,涉及创造性并能够工业应用的新发明应可获得专利。然而,与贸易有关的知识产权协议没有定义“新的”、“创造性的”或“能够工业应用的”等术语。成员可以排除为保护人类生命、健康或环境所必需的商业利用的专利性。专利应不受发明地点、技术领域或产品来源的歧视。其本质在于不歧视,专利适用于任何发明,不受限制。两个多世纪以来,生物体的专利问题一直存在争议,因为人们认为生命形式是自然产生的,因此不受人类发明的影响。1980 年之前,专利只授予机械和化学发明,微生物过程被视为一个独立的实体。然而,1873 年,路易斯·巴斯德获得了第一项基于微生物的专利,具体来说是针对一种改进啤酒发酵的过程。自然产物学说将生物排除在专利范围之外,这种学说在世界各国一直盛行,直到 1980 年 Diamond v. Chakraborty 案的里程碑式判决。该裁决授予转基因细菌专利,为在某些条件下承认微生物为可专利主题铺平了道路。《关于国际承认用于专利程序的微生物保藏的布达佩斯条约》于 1977 年签署,并于 1980 年生效,为用于专利目的的微生物保藏和保存制定了国际标准。 《布达佩斯条约》允许国际承认微生物寄存,以用于专利程序。它允许申请人将生物材料寄存于一个公认的机构,并在条约的所有缔约国获得认可。这对于涉及微生物的发明尤其有用,因为不可能提供完整的描述。该条约确保在提交专利申请之前进行的寄存可以得到全世界的认可。截至 2008 年,全球约 20 个国家共有 37 个公认的机构 (IDA)。这些 IDA 不仅接受微生物寄存,还接受其他生物材料的寄存。符合条件的材料范围包括细胞、遗传载体和用于表达基因的生物体。该条约没有定义什么是微生物,允许接受严格意义上不是微生物但出于披露目的所必需的实体。微生物的概念至关重要,但由于这些生命形式的专利固有的不一致性,其准确的科学定义仍然难以捉摸。《与贸易有关的知识产权协议》规定对微生物的生产进行专利保护,但未能对其进行全面定义,导致成员国没有可遵循的标准。这种模糊性源于转基因生物和天然物质之间的不明确区别。因此,“微生物”一词将被广泛解释为涵盖任何可自我复制或通过宿主生物复制的生物材料。该定义包括基因、基因序列、质粒和复制子等亚细胞成分。根据 TRIPS 协议,可获得专利的微生物发明包括: 1. 生产新微生物的方法 2. 通过特定方法生产的新微生物 3. 新微生物本身 4. 培养或使用已知/新微生物生产繁殖微生物(例如疫苗)或副产品(例如抗生素、酶)的方法 尽管“微生物”和“微生物过程”的专利是强制性的,但是 TRIPS 协议并未对“微生物”进行具体定义或概述其保护范围。 微生物作为发明或发现的概念引发了激烈的争论。美国最高法院 1980 年在 Diamond v. Chakrabarty 案中的判决确定转基因细菌可以获得专利,但该裁决基于这样的观点,即微生物要被视为发明,必须经过人为干预。如果微生物是第一次从自然界中分离出来的,则不能获得专利,因为这意味着地球或深海海底发现的矿物和矿石也可以获得专利。法院的裁决实际上允许在某些条件下对生物物质进行专利保护,只要满足基本的专利性标准。然而,TRIPS 协议未能定义微生物,导致不同司法管辖区的解释不同。实际上,美国、欧洲和日本等主要司法管辖区已授予微生物专利,但这并未明确微生物的定义或其与自然产物理论的关系。1980 年最高法院的 Diamond v. Chakrabarty 案标志着生物专利法的重要转折点。在此裁决之前,人们普遍认为不可授予专利的主题包括生物。然而,法院的裁决授予了一种能够消耗石油泄漏的转基因细菌专利,有效地改变了现状。1972 年,通用电气公司的遗传工程师兼研究员 Ananda Mohan Chakrabarty 为一种用于分解原油的细菌申请了专利。这种细菌被称为假单胞菌,含有两个产生能量的质粒,可提供不同的途径来降解原油的不同成分。最初,专利审查员以法律禁止为生物申请专利为由拒绝了 Chakrabarty 的申请。专利上诉和干涉委员会同意这一决定。然而,美国海关和专利上诉法院推翻了有利于 Chakrabarty 的裁决,指出微生物是活的这一事实在专利法下不具有法律意义。该案最终上诉至最高法院,并于 1980 年 6 月 16 日作出判决。法院以 5 比 4 的投票结果裁定,根据《美国法典》第 35 章第 101 条,活的人造微生物属于可申请专利的客体。这一具有里程碑意义的裁决为新颖且非显而易见的生物体形式申请专利开辟了新途径。任何新颖且有用的方法、设备或材料,只要满足某些条件,都可以获得专利。一起法院案件裁定,转基因细菌被视为一项发明,因为尽管它是活的,但它是人类制造的。这意味着细菌可以归类为材料或制成品。在另一个国家,他们的法律规定发明是制造物品或物质的新颖且有用的方法。他们没有定义这些术语的含义,所以他们只是看这件事是否产生了非生命有形的东西。法律还禁止动物和植物获得专利,但微生物如果满足其他要求,则可以获得专利。后来,法律进行了修改,将微生物纳入其中,并允许为与微生物相关的工艺申请专利。加尔各答高等法院在 Dimminaco AG 诉专利局长 (2002) 案中的一项裁决确认了具有活体最终产品的生物技术工艺的可专利性。该案涉及一家瑞士公司申请专利一种用于治疗传染性家禽疾病滑囊炎的活疫苗。专利局长最初拒绝了该申请,理由是该工艺由于依赖天然微生物物质而不具备制造资格。然而,法院推翻了这一裁决,认为《专利法》中“物品”的定义并不排除生物。法院认为,即使最终产品含有活体物质,制造疫苗的工艺也是可专利的,因为它可以产生可销售的产品,并通过创造性工艺发生变化。法院的裁决对生物技术行业具有重大影响,该行业正以势不可挡的速度迅速增长。它为微生物专利铺平了道路,并确立了具有活体最终产品的生物技术工艺确实有资格获得专利保护。这项裁决被视为专利法领域的一项重大突破,使创新者能够保护他们拯救生命的发明和创新。该决定确认,印度专利法并不禁止最终产品含有活体生物的工艺,为未来生物技术的突破铺平了道路。加尔各答高等法院对此案的判决非常及时,因为它与大多数国家(包括欧洲、日本和美国)对生物技术专利性的立场一致。事实上,在 Dimminaco 作出决定后,印度与蓬勃发展的生物技术行业的需求同步发展。知识产权的概念是多方面的,涵盖知识所有权、使用、转让和传播等各个方面。《与贸易有关的知识产权协议》规定对通过非生物和微生物过程生产的微生物、植物和动物提供专利保护。这对那些希望完全排除此类专利的发展中国家来说是一个挑战。因此,重点应放在限制这些条款的范围上。《与贸易有关的知识产权协议》对“微生物”的定义缺乏明确性。国家当局必须将其定义为涵盖细菌、病毒、真菌和藻类。此外,专利保护的范围受到发现和发明之间不明确区分的限制。自然产生的微生物不能被视为发明,但那些经过人类干预的基因改造的微生物则可以。为了解决对微生物可专利性的担忧,应该采用“微生物”的精确科学定义,将其与自然发生和人为干预区分开来。只有涉及大量人类投入(如基因工程)的专利才应被授予。生物技术行业对创新和发明的追求,正如 Diamond v. Chakrabarty 和《与贸易有关的知识产权协议》等案件所见,强调了为微生物在处理漏油、预防疾病或制造救命药物方面的实用性申请专利的重要性。如果没有有效的专利保护,有价值的信息可能仍然是商业秘密。此处给出的文章文本保护微生物研究的专利制度已成为印度、欧洲和美国等多个国家讨论的话题。Nair, AS (1999) 知识产权 (IPR):印度情景讨论生命形式的专利。Everyman's Science 34 (2): 58–61。Google Scholar Ammen, J. 和 Swathi, N. (2010) 以美国、欧洲和印度的方式为生命申请专利。知识产权杂志 15: 55–65。Google Scholar 欧洲专利公约 (EPC)。(1973) 第 52 条,可申请专利的发明。2010 年 3 月 2 日,访问于 2010 年 3 月 5 日。Philip, MW (2006) 微生物的专利。自然评论药物发现 13 (5): 45–56。Google Scholar 美国专利商标局 35 USC 101 可获得专利的发明 – 专利法,12 月 18 日,2010 年 4 月 15 日访问。Sekar, S. 和 Kandavel, D. (2002) 微生物专利:制定政策框架。知识产权杂志 7: 211–221。Google Scholar Debré, P. 和 Forster, E. (1998) Louis Pasteur。马里兰州巴尔的摩:约翰霍普金斯大学出版社。Google Scholar 世界知识产权组织 (WIPO)。(2010) 联合国机构,2010 年 4 月 24 日访问。非洲地区知识产权组织 (ARIPO)。(1976) 2010 年 3 月 26 日访问。欧亚专利组织。(1995) 2010 年 4 月 22 日访问。WIPO 网站。 (2010) 关于国际承认为专利程序目的保存微生物的布达佩斯条约。2010 年 3 月 15 日,2010 年 3 月 9 日访问。根据《布达佩斯条约》第 13.2(a) 条,已获得国际保存单位地位的保存机构 - 国际保存单位名单,2010 年 4 月 1 日,2010 年 4 月 5 日访问。Sekar, S. 和 Kandavel, D. (2004) 微生物专利保存的未来。生物技术趋势 22 (5): 213–218。文章 Google Scholar Ames, D. (2004) 为人类遗产申请专利:DNA 专利所带来的威胁。2010 年 1 月 10 日,2010 年 4 月 2 日访问。WTO (2010) 了解 WTO:基础知识,什么是世界贸易组织? 3 月 5 日,2010 年 3 月 26 日访问。WTO(2010 年)乌拉圭回合协定、1994 年关税及贸易总协定,2010 年 3 月 5 日访问。WTO(2010 年)乌拉圭回合协定:TRIPS,第二部分 – 有关知识产权的可用性、范围和使用的标准。第 5 和 6 节,第 27 条可获得专利的主题,2010 年 4 月 12 日访问。Mittal,DP(1999 年)印度专利法。新德里:Taxmann Allied Services。Google Scholar 本文讨论了欧盟和美国与专利相关的各种法律和法规。它引用了多个来源,包括欧洲专利公约 (EPC)、美国专利法和 Diamond v. Chakrabarty 等专利案例。本文还参考了印度立法,特别是 2002 年《专利(修正案)法》和法院判决,如密歇根州立大学诉专利助理控制人和专利和商标总控制人。此外,文中还提到了专利法方面的书籍,例如 Janice MM 的《专利法简介》和 Westerlund 的《欧洲和美国专利法下的生物技术专利等效性和排除》。此外,文中还涉及 Philip WG 的《化学药品和生物技术专利全球法律、实践和战略基础》一书中的化学药品和生物技术专利全球法律、实践和战略基础。该文本是与不同司法管辖区的专利法和法规相关的各种资料的汇编。专利局于 2008 年发布了《专利实践和程序手册草案》,概述了自那时以来一直实施的程序。IPR-Indlaw.com 于 2010 年发布了一份类似的专利性报告,专门讨论微生物的专利性。作者对包括 VV Pyarelal 博士、校长 KN James 博士和 S. Vijayan Nair 教授在内的各位人士表示感谢,感谢他们为本研究提供了必要的支持和资源,并感谢参与该项目的教职员工和学生的鼓励。