图像超分辨率是最流行的计算机视觉问题之一,在移动设备上有许多重要的应用。虽然已经为这项任务提出了许多解决方案,但它们通常甚至没有针对常见的智能手机 AI 硬件进行优化,更不用说通常仅支持 INT8 推理的更受限的智能电视平台了。为了解决这个问题,我们推出了第一个移动 AI 挑战赛,其目标是开发一种基于端到端深度学习的图像超分辨率解决方案,该解决方案可以在移动或边缘 NPU 上展示实时性能。为此,为参与者提供了 DIV2K 数据集和训练过的量化模型,以进行高效的 3 倍图像升级。所有模型的运行时间都在 Synaptics VS680 智能家居板上进行评估,该板具有能够加速量化神经网络的专用 NPU。所提出的解决方案与所有主流移动 AI 加速器完全兼容,能够在 40-60 毫秒内重建全高清图像,同时实现高保真度结果。本文提供了挑战赛中开发的所有模型的详细描述。
本综述探讨了自然语言处理 (NLP) 和人工智能 (AI) 的集成,以增强实时分析的数据可视化。在数据呈指数增长的时代,传统的静态可视化越来越不能满足实时决策的需求。NLP 和 AI 提供了复杂的工具来动态解释和可视化数据,将大量原始信息转化为各个领域的可操作见解。本文综合了 NLP 和 AI 在数据可视化方面的当前研究、方法和应用,重点介绍了关键进展,例如增强的数据可解释性、实时数据处理能力以及通过自然语言查询和交互元素改善的用户交互。它还解决了实施这些技术所面临的挑战和局限性,包括计算复杂性、数据质量问题和道德考虑。本综述确定了重要的趋势和未来方向,例如增强现实和虚拟现实 (AR/VR) 的集成以及生成式 AI 模型的使用,这些趋势和方向有望进一步推动该领域的发展。通过全面概述数据可视化中 NLP 和 AI 的现状,本文旨在为未来的研究和开发工作提供参考和指导,以利用这些技术实现更有效、更高效的数据驱动决策。
摘要 骑马是一种有效的肌肉疾病治疗方法。本研究的主要目标是开发一种物理治疗模拟器(概念验证),而不是真正的马,尽管采用了脑电图 (EEG) 放大器和惯性运动捕捉系统 (IMCS)。在实验中,专业和非专业骑手在骑马模拟器期间的身体运动和大脑行为受到监控。基于 IMCS,考虑了用于识别两组骑手骨盆区域活动变化的计算分析。EEG 系统用于调查从未使用过马模拟器的经验丰富的骑马者的大脑信号。为此,进行了以下实验,代表身体和大脑行为。结果得出结论,缺乏经验的骑马者在骑模拟器时往往会犯动作错误,这可能会导致外部臀部和背部区域不对称移位。脑电图研究表明,负责智力和注意力的额叶被激活。此外,负责运动和视觉的大脑颞叶和顶叶区域也显著激活。
GROQ的体系结构与高批量GPU的相反,GROQCHIP处理器具有230 MB的SRAM,可提供80TB/s的芯片带宽。图3显示了Groqchip如何非常有效地揭示指令级别并行性,记忆级并行性和数据级并行性,从而同时采用了计算和交流的独特方法。开发后,控制权被移交给软件端,以构建一个大规模的并行编译器,以利用所有这些形式的并发。这有助于有助于Groq在批次1.在其他体系结构中,必须处理256个用于培训的256 BA TCH,这意味着必须处理256张图像,并且“在应用程序可以提供有关第一个的信息之前从''中学到的图像。在GROQ在批次1运行,因此在收到的每个图像时处理每个图像(而不是等待所有256),不仅等待降低,精度会提高。另外,GROQ架构允许开发人员不摊销GPU和其他传统体系结构中固有的长潜伏期。
在为期六周的课程中,每个星期六将参加一个60分钟的会议,学生将以高达4人的身份工作。在卡内基学习认证的老师的支持下,学生将审查和练习考试中涉及的概念,例如:代数的心脏解决问题,解决问题和数据分析,提前数学以及数学的其他主题,包括地球和三角学。
摘要。目前,制造可靠的无人机(无人机)是科学和技术的一项重要任务,因为此类设备在数字经济和现代生活中有很多用例,所以我们需要确保它们的可靠性。在本文中,我们建议用低成本组件组装四轴飞行器以获得硬件原型,并使用现有的开源软件解决方案开发具有高可靠性要求的飞行控制器软件解决方案,该解决方案将满足航空电子软件标准。我们将结果用作教学课程“操作系统组件”和“软件验证”的模型。在研究中,我们分析了四轴飞行器及其飞行控制器的结构,并提出了一种自组装解决方案。我们将 Ardupilot 描述为无人机的开源软件、适当的 APM 控制器和 PID 控制方法。当今航空电子飞行控制器可靠软件的标准是实时分区操作系统,该系统能够以预期的速度响应来自设备的事件,并在隔离分区之间共享处理器时间和内存。此类操作系统的一个很好的例子是开源 POK(分区操作内核)。在其存储库中,它包含一个四轴飞行器系统的示例设计,使用 AADL 语言对其硬件和软件进行建模。我们将这种技术与模型驱动工程应用于在真实硬件上运行的演示系统,该系统包含一个以 PID 控制作为分区过程的飞行管理过程。使用分区操作系统将飞行系统软件的可靠性提升到了一个新的水平。为了提高控制逻辑的正确性,我们建议使用形式验证方法。我们还提供了使用演绎方法在代码级别以及使用微分动态逻辑在信息物理系统级别验证属性的示例,以证明稳定性。
在这项研究中,开发了用于踩踏过程中定量动态拟合的实时评估系统。该系统由LED标记,连接到计算机的数码相机和标记检测程序。LED标记附着在矢状面上的臀部,膝盖,踝关节和第五元。PlayStation3 Eye被选为本文中的主要数码相机具有许多使用运动捕获的优点,例如高FPS(每秒帧)约180fps,320×240分辨率和易于使用的低成本。制造商检测程序是通过将LabView2010与Vision Builder一起使用的。该程序由三个部分组成:图像采集和处理,标记检测和关节角度计算以及输出部分。数码相机的映像是在95FPS中获取的,并且设置了程序以实时测量较低的接头角度,以将用户作为图形提供,并允许将其保存为测试文件。通过使用Holmes方法在每个马鞍高度下在每个马鞍高度处进行三个鞍高度(膝盖角:25、35、45 O)和三个节奏(30、60、90 rpm)的踩踏板验证系统,这是一种测量下肢角度的方法,以确定鞍高的高度。结果显示,系统的平均误差和强相关性,分别是1.18±0.44 o,0.99±0.01 o。由于马鞍高度的变化,几乎没有错误,但节制发生了绝对错误。考虑到平均误差约为1°,它是用于定量动态拟合评估的合适系统。在未来的研究中,必须使用两个具有额叶和矢状平面的数码相机来减少误差。
摘要开发用于实时监控和预测环境健康影响的创新工具对于有效的公共卫生干预措施和资源分配策略至关重要。尽管对此类通用工具的需求先前是由负责发出预期警报的公共卫生计划者和地区当局的回应,但尚未开发出一种全面,稳健和可扩展的实时系统,用于预测与温度有关的当地尺度中与温度相关的多余死亡。填补了这一空白,我们提出了一个灵活的操作框架,用于将公开可用的天气预报与特有基于小普查区域的温度变性风险功能耦合,后者是使用最先进的环境流行病学模型得出的。利用欧洲领先的气象中心的高分辨率温度数据预测,我们展示了一种实时应用,以预测2022年7月在英格兰和威尔士的热浪期间的过量死亡率。在不同的交货时间内由小地理区域的预期温度相关的多余死亡组成的输出可以自动化以在各种时空尺度上生成地图,从而促进预防措施和提前对公共卫生资源的分配。此处讨论的实际案例示例证明了预测(预期的)与热量相关的过量死亡的应用,但该框架也可以适应其他与天气相关的健康风险和不同的地理位置区域,但提供了有关气象暴露的数据,以及潜在的健康状况均可用于校准相关风险功能。拟议的框架迫切需要预测全球公共卫生系统的短期环境健康负担,尤其是在低收入和中等收入地区,在这种情况下,对减轻不良暴露的迅速反应和对极端温度的影响通常受到可用资源的限制。
将进行测试以确定哪些传感器可以快速、准确且一致地检测高浓度的目标成分。现场和实验室测试将包括使用不同类型的预处理工艺批量测试多个废水样品,以及使用第三方实验室测试验证结果等元素。除了传感技术外,该团队还将寻求将该技术与当前基础设施相结合。为实现这一目标,该团队将与 NESDI 传感器接口和仪器监控 (SIIM) 图形用户界面 (GUI) 项目团队合作。SIIM GUI 技术提供了与常见工业控制系统 (ICS) 接口的框架,并将为该项目将开发的传感系统提供遥测、GUI 和数据网络。
