免责声明。本出版物中包含的信息会根据不断变化的政府要求和法规不断审查。任何订户或其他读者都不应在未参考适用法律和法规和/或未征求适当的专业建议的情况下根据任何此类信息采取行动。尽管已尽一切努力确保准确性,但国际航空运输协会对因错误、遗漏、误印或误解本出版物内容而造成的任何损失或损害概不负责。此外,国际航空运输协会明确表示,对于任何个人或实体(无论是否购买本出版物)根据本出版物的内容所做或不做的事情以及由此造成的后果,国际航空运输协会概不负责。
乘客越来越关注飞行过程中的舒适度。乘客对航空公司的选择取决于多种因素,包括价格、安全性、忠诚度计划、服务质量、机上娱乐和行李处理。影响他们选择航空公司的另一个关键因素是他们对飞机客舱的满意度和舒适感,这是当前研究的主要重点。整个客舱系统的许多因素,包括客舱环境、设施、服务和乘客的心理变量,都会影响他们的舒适度。航空公司越来越注重舒适度,通过开发飞机客舱内部来提高乘客舒适度并在竞争激烈的市场中获得竞争优势,从而脱颖而出。智能飞机客舱的出现为所有对乘客飞行体验产生负面影响的不适问题提供了智能解决方案。未来的智能飞机有潜力通过多种方式顺畅地运行客舱并改善客户体验,例如智能头顶行李舱、未来智能座椅、智能可调光窗户、智能服务和 4k 清晰度的零触摸娱乐屏幕。本研究旨在评估乘客对埃及航空当前飞机客舱内部的满意度,并调查影响乘客在客舱中不适的因素。此外,探索乘客如何看待“智能客舱”解决他们的不适问题及其对提高飞行舒适度的影响。为了实现研究目标,在埃及航空的埃及常旅客中分发了一项在线调查。共收集并分析了 311 份有效问卷。结果表明,乘客对埃及航空目前的飞机客舱感到满意;然而,他们报告了一些不适问题,影响了他们在飞行过程中的便利性。此外,大多数乘客对使用“智能客舱”及其对提升舒适感的影响表现出浓厚兴趣。
对乘客而言,客舱内其他重要因素包括整体照明水平以及乘客附近的照明水平、环境噪音和振动。最近,客舱空气的质量和杂质及其对人的影响引起了一些普遍关注,尤其是与烟草烟雾有关。然而,可以说,客舱空气中除烟草烟雾以外的其他方面对人类健康构成了更严重的问题。这些包括客舱内气压降低的影响,即使对于健康人来说,这种气压对呼吸系统的要求也比在海平面上更高。对于患有胃病、心脏病甚至牙齿疾病的乘客来说,气压降低可能会产生有害影响。还必须考虑客舱环境中相对湿度较低以及存在臭氧和宇宙辐射等大气危害对乘客的影响。
Paperclip Design Limited – 香港:Checkerboard 可转换座椅系统 Checkerboard 专为短途市场设计,是一种可在经济舱和商务舱配置之间轻松转换的乘客座椅概念,后者具有额外的宽度、额外的 8 英寸腿部空间以及许多其他有用的功能。Checkerboard 使航空公司能够灵活地调整每个航班的客舱配置,以满足需求的巨大变化,使他们能够最大限度地提高收入,同时为高价值客户提供真正差异化的产品。 Zodiac Aerospace(合作伙伴 ZEO)– 美国:ISIS – 创新空间内饰系统 (AIX 7B40) ISIS 内饰是对 A320 内饰进行解构、挑战和最终重新构想的结果。它的旋转行李箱使行李容量增加了 60%,并增加了头部空间。
人们一直在争论二氧化碳 (CO 2 ) 和挥发性有机化合物 (VOC) 对人们的健康、幸福感和认知能力的影响。飞机客舱的室内环境具有独特的特点,乘客会接触到外部空气和循环空气的混合。这些特点包括乘客密度高、无法离开环境、相对湿度低以及需要增压。ComAir 研究由欧盟清洁天空 2 计划资助,旨在调查减少室外空气摄入量对客舱空气质量和乘客幸福感的影响。该研究的主要实验采用 2(“占用率”)X 4(“空气通风状况”)析因设计,对参与者进行分层随机化。占用率表示飞机上的人数(半机与满机),并改变心理上重要的幸福感因素空间关系。四种空气通风模式级别为:人均典型飞机气流模式的基线、ASHRAE 161 要求(标准建议)、ASHRAE 161 一半(推荐流量的一半)和目标 CO 2 浓度接近监管限值的再循环模式。本文介绍了 ComAir 的背景和实验程序,并给出了基线空气通风模式下环境条件和受试者福祉和健康的一些初步结果。
关键词 飞机客舱,热舒适度,数值模拟,PMV(预测平均投票),PPD(预测不满意百分比) 1 引言 客机客舱是一个狭窄封闭的空间,通常乘客密度较高。由于现在的长飞行时间,热舒适度成为设计阶段需要考虑的重要因素。波音、空客等飞机制造商为改善热舒适度付出了巨大努力(Pang et al. 2014)。有几种方法可以研究这些区域的热舒适度。在一些研究中,使用了著名的预测平均投票(PMV)模型(Fanger 1970),但也有一些研究进行了现场热舒适度调查。也可以采用数值模拟和计算流体动力学(CFD)来预测局部皮肤温度并计算热舒适度。Cui et al. (2014) 在飞机客舱内进行了现场测量,绘制了空气温度、相对湿度、黑球温度和空气速度等影响参数。还对乘客进行了问卷调查。他们得出的结论是,乘客对热度并不满意,因为他们感到很热。热舒适度图表现出不均匀性;中舱温度总是较高。然而,据报道,垂直温度梯度和空气速度都在舒适区内。在另一项研究中,调查了飞机客舱乘客的局部和整体热舒适度(Park 等人,2011 年)。结论是,模拟飞机客舱的整体热感觉相对较好,但据报道,局部热不适感较高。Haghighat 等人(1999 年)在 43 次商业航班中进行了测量,持续时间超过一小时,期间持续监测温度、相对湿度和二氧化碳浓度。结果表明,平均气温为
CVMS 专为机载环境而设计,可轻松与其他飞机系统集成。由于每个单元都由两个 115VAC 飞机电源供电,因此数据可靠性和完整性得到增强,并且即使系统部件出现故障或物理损坏也能继续运行。以太网分布式交换机与小组摄像头一起安装,有助于最大限度地减少布线,并降低由此产生的线束的重量、成本和复杂性。由于网络通信和数据共享是通过成熟的光纤网络处理的,因此连接简单、可靠,并且完全不受电磁效应 (EME) 和其他飞机系统干扰的影响。系统的扩展很简单,只需在任何光纤以太网链路中添加另一个分布式交换机及其摄像头即可。
客机客舱是一个狭窄而封闭的空间,通常人口密度很高。由于现在的长飞行时间,热舒适度成为设计阶段需要考虑的重要因素。波音、空客等飞机制造商为改善热舒适度付出了相当大的努力(Pang et al. 2014)。有几种方法可以用来研究这类区域的热舒适度。在一些研究中,使用了著名的预测平均投票 (PMV) 模型(Fanger 1970),但也有一些研究进行了现场热舒适度调查。也可以采用数值模拟和计算流体动力学 (CFD) 来预测局部皮肤温度并计算热舒适度。Cui et al.(2014)在飞机客舱内进行了现场测量,以绘制空气温度、相对湿度、黑球温度和空气速度等影响参数。还对乘客进行了问卷调查。他们得出的结论是,乘客对热环境并不满意,因为他们感觉很热。热舒适度图表现出不均匀性;中舱的温度始终较高。但是,据报道,垂直温度梯度以及空气速度都在舒适区内。在另一项研究中,调查了飞机客舱乘客的局部和整体热舒适度(Park 等人,2011 年)。得出的结论是,模拟舱内的整体热感觉
• 空客的人为因素被视为一项关键能力,由相关领域的专家团队负责。 • 客舱和货运人为因素团队的任务是 • 确保我们的客舱和货运产品和服务满足用户(机组人员和乘客)的需求和期望,以及 • 为客户(航空公司)提供最高运营效率。 • 该团队由涵盖各个学科(人体工程学、心理学、航空医学、工程学、可用性)的专家组成。
批准论文:使用计算流体动力学对军用飞机客舱的热舒适性分析,由 İREM KÖSE 提交,部分满足中东技术大学机械工程理学硕士学位的要求,由自然与应用科学研究生院院长 Halil KALIPÇILAR 教授提交