人们一直在争论二氧化碳 (CO 2 ) 和挥发性有机化合物 (VOC) 对人们的健康、幸福感和认知能力的影响。飞机客舱的室内环境具有独特的特点,乘客会接触到外部空气和循环空气的混合。这些特点包括乘客密度高、无法离开环境、相对湿度低以及需要增压。ComAir 研究由欧盟清洁天空 2 计划资助,旨在调查减少室外空气摄入量对客舱空气质量和乘客幸福感的影响。该研究的主要实验采用 2(“占用率”)X 4(“空气通风状况”)析因设计,对参与者进行分层随机化。占用率表示飞机上的人数(半机与满机),并改变心理上重要的幸福感因素空间关系。四种空气通风模式级别为:人均典型飞机气流模式的基线、ASHRAE 161 要求(标准建议)、ASHRAE 161 一半(推荐流量的一半)和目标 CO 2 浓度接近监管限值的再循环模式。本文介绍了 ComAir 的背景和实验程序,并给出了基线空气通风模式下环境条件和受试者福祉和健康的一些初步结果。
因其形状而消耗更少的能量(https://www.tudelft.nl/lr/flying-v/)。目前,航空运输约占人类活动每年产生的 360 亿吨二氧化碳的 2%(https://www.cleansky.eu/benefits),这表明需要开发一种更省油的飞机。这款 Flying V 最初是柏林工业大学学生 Justus Benad 在汉堡空客的毕业论文项目中提出的构想(https://www.tudelft.nl/lr/flying-v/)。在 Flying V 中,客舱、货舱和油箱都集成在机翼结构中。Flying V 搭载的乘客数量与空客 A350 大致相同,这是这款新飞机的基准。Flying V 比 A350 小,与可用体积相比,湿润表面积更小。结果阻力更小,从而导致相同距离所需的燃料更少。目前,Flying V 正在开发中使用传统煤油发动机,但也会研究其他推进方式,如氢或电子煤油,但这不是本研究的目的。
呼吸道传染性空气传播疾病,如流感、H1N1、严重急性呼吸道综合征 (SARS) 和 COVID-19 在飞机客舱等封闭环境内的传播一直是一个有待研究的课题,因为感染某种疾病的乘客在说话、咳嗽或打喷嚏时产生的呼吸道飞沫会对其他乘客造成有害影响。它们能够在短时间内飞翔并悬浮在周围的空气中或降落在乘客或表面上。这项工作介绍了对宽体飞机客舱部分中移动乘客以不同速度产生的咳嗽和打喷嚏飞沫的气流行为的研究结果。此外,它比较了不同流速和速度的传播,以显示这些疾病如何从移动和站立的乘客传播给其他乘客。该数值模拟使用计算流体动力学 (CFD) 建模模拟。结果表明,移动乘客产生的咳嗽和打喷嚏飞沫的气流可以到达坐着的乘客;但喷嚏飞沫的危害性比咳嗽飞沫更大,而且两者都能在机舱内传播很长的距离。此外,当比较乘客移动和静止时飞沫扩散范围时,发现乘客移动得越快,飞沫传播得越远。
A380 可在 11,000 米的高空飞行长达 14 小时,环境温度为 -56°C,压力低于正常环境压力的 20%。在如此恶劣的环境中,没有人能在空中生存。为了确保乘客和乘务员在与日常生活相同的条件下享受飞行,需要机舱压力控制系统。空客选择了位于德国法兰克福的 Nord-Micro(UTC Aerospace Systems 的业务部门)为其机队的新旗舰提供高度可靠的机舱压力控制系统。
免责声明:虽然我们已采取合理措施确保本报告的准确性,但 WRAP 不承担因依赖本报告而产生或产生的任何损失、损害、成本或费用的责任。读者有责任评估本报告内容的准确性和结论。引文和案例研究来自公共领域,并在可行的情况下寻求许可。本报告并不代表对所用示例的认可,也未得到其中提到的组织和个人的认可。本材料受版权保护。您可以免费复制它,可以使用其中的摘录,前提是它们不用于误导性上下文,并且您必须标明材料来源并承认 WRAP 的版权。您不得使用本报告或其中的材料来认可或暗示 WRAP 已经认可商业产品或服务。
研究与设计方法 ................................................................................................................ 10 以人为本的设计 .............................................................................................................. 10 设计思维 .............................................................................................................................. 11 参与式设计 .............................................................................................................................. 12 在线调查(定性和定量) ...................................................................................................... 12 专家知识获取 ...................................................................................................................... 13 小组获取方法 ...................................................................................................................... 13 头脑风暴 ............................................................................................................................. 14 可用性评估 ...................................................................................................................... 15 基于场景的设计 ............................................................................................................. 15 角色 ............................................................................................................................. 16 问题、选项和标准 (QOC) ............................................................................................. 16 原型 ............................................................................................................................. 17 虚拟/增强现实 ............................................................................................................. 17 第 4 章 贡献 ............................................................................................................. 19
研究与设计方法 ................................................................................................ 10 以人为本的设计 ...................................................................................................... 10 设计思维 ...................................................................................................................... 11 参与式设计 ................................................................................................................ 12 在线调查(定性和定量) ...................................................................................... 12 专家知识获取 ............................................................................................................. 13 小组获取方法 ............................................................................................................. 13 头脑风暴 ...................................................................................................................... 14 可用性评估 ............................................................................................................. 15 基于场景的设计 ...................................................................................................... 15 角色 ...................................................................................................................... 16 问题、选项和标准 (QOC) ................................................................................ 16 原型 ......................................................................................................................
2.1目前窄带(L波段、VHF、HF)系统多用于座舱通信,提供语音和数据通信服务;Ku/Ka波段多用于客舱通信,为客舱旅客提供互联网接入服务。随着以Ka/Ku高通量卫星为代表的新一代宽带卫星技术的发展和成熟,客舱通信容量大幅提升,单机速率已高达100Mbps,流量成本大幅降低(目前约为座舱成本的1/100或以下)。以座舱宽带连接为特征的新一代互联飞机,有助于提升航空公司运维和管控服务能力,未来将迎来爆发式发展。近年来,包括Inmarsat在内的许多国家和组织都在大力发展和部署高通量卫星。HTS业务网络的快速发展,为一体化驾驶舱客舱宽带空地互联的规模应用提供了有利条件和机遇。
关键词 飞机客舱,热舒适度,数值模拟,PMV(预测平均投票),PPD(预测不满意百分比) 1 引言 客机客舱是一个狭窄封闭的空间,通常乘客密度较高。由于现在的长飞行时间,热舒适度成为设计阶段需要考虑的重要因素。波音、空客等飞机制造商为改善热舒适度付出了巨大努力(Pang et al. 2014)。有几种方法可以研究这些区域的热舒适度。在一些研究中,使用了著名的预测平均投票(PMV)模型(Fanger 1970),但也有一些研究进行了现场热舒适度调查。也可以采用数值模拟和计算流体动力学(CFD)来预测局部皮肤温度并计算热舒适度。Cui et al. (2014) 在飞机客舱内进行了现场测量,绘制了空气温度、相对湿度、黑球温度和空气速度等影响参数。还对乘客进行了问卷调查。他们得出的结论是,乘客对热度并不满意,因为他们感到很热。热舒适度图表现出不均匀性;中舱温度总是较高。然而,据报道,垂直温度梯度和空气速度都在舒适区内。在另一项研究中,调查了飞机客舱乘客的局部和整体热舒适度(Park 等人,2011 年)。结论是,模拟飞机客舱的整体热感觉相对较好,但据报道,局部热不适感较高。Haghighat 等人(1999 年)在 43 次商业航班中进行了测量,持续时间超过一小时,期间持续监测温度、相对湿度和二氧化碳浓度。结果表明,平均气温为
客机客舱是一个狭窄而封闭的空间,通常人口密度很高。由于现在的长飞行时间,热舒适度成为设计阶段需要考虑的重要因素。波音、空客等飞机制造商为改善热舒适度付出了相当大的努力(Pang et al. 2014)。有几种方法可以用来研究这类区域的热舒适度。在一些研究中,使用了著名的预测平均投票 (PMV) 模型(Fanger 1970),但也有一些研究进行了现场热舒适度调查。也可以采用数值模拟和计算流体动力学 (CFD) 来预测局部皮肤温度并计算热舒适度。Cui et al.(2014)在飞机客舱内进行了现场测量,以绘制空气温度、相对湿度、黑球温度和空气速度等影响参数。还对乘客进行了问卷调查。他们得出的结论是,乘客对热环境并不满意,因为他们感觉很热。热舒适度图表现出不均匀性;中舱的温度始终较高。但是,据报道,垂直温度梯度以及空气速度都在舒适区内。在另一项研究中,调查了飞机客舱乘客的局部和整体热舒适度(Park 等人,2011 年)。得出的结论是,模拟舱内的整体热感觉