a b s t r a k i n f o a r t i r e l这项研究是通过使用量子意式浓缩软件实现的密度函数理论方法来确定基于状态的带结构和密度的石墨电子性能的。进行计算之前,收敛研究是收敛的截止和K点。计算是使用能量截止的125 RY和K-Point 30 30 30。从频带结构曲线中,石墨的电子特性是能带隙0.01085552 eV的半导体。同时,根据状态曲线的密度,在费米水平附近的2 ev中获得了高密度。div>旋转和旋转的状态曲线的密度表明石墨是一种非磁性物质。
摘要:缺乏针对DNA对带电颗粒辐射的电子激发反应的分子级别的理解,例如高能质子,仍然是推进质子和其他离子束癌疗法的基本科学瓶颈。尤其是,不同类型的DNA损伤对高能质子的依赖性代表着重要的知识空隙。在这里,我们使用大量平行的超级计算机采用第一原理实时依赖时间依赖性密度函数理论模拟,以揭示从高能质子到水中DNA的能量传递的量子力学细节。计算表明,质子在DNA糖 - 磷酸侧链上的沉积能量明显多于核仁酶,并且预期在DNA侧链上的能量转移大于水。由于这种电子停止过程,在DNA侧链上产生了高能孔,作为氧化损伤的来源。
使用基于密度函数理论的紧密结合方法,我们研究了羰基对孔物石墨烯薄膜的电物质特性的影响,其直径为1.2 nm,颈部宽度为0。7-2 nm。根据Mulliken的部分电荷分布图的分析,在孔边缘的原子上进行了降落。已经建立了从羰基到孔的石墨烯的电荷转移现象。在研究中的特定膜的特定电导率变化的规律性,在“ Zigzag”方向和扶手椅上的颈部宽度增加了“六边形石墨烯格子的方向”。表明,电导率在“ Zigzag”方向突然变化,并显示了扶手椅方向的接近线性增加。在选择量子电子传输方向时,发现了孔石墨烯膜中电导率各向异性的存在。
助教:TBD办公室:TBD办公时间:TBD联系信息:TBD IT帮助:DEN Services目录描述概率;随机变量和向量;关节,边缘和条件分布;贝叶斯定理;随机过程简介;统计推断;回归和生成模型。课程描述课程是适用于所有工程学科的概率和统计信息的简介。班级的重点是学习概率和统计数据的基本概念,这些概念在解释工程/科学数据和概率机器学习技术中的应用中找到了应用。该课程的第一部分将重点关注概率空间,随机变量和向量,累积和概率密度函数,关节,边际和条件概率,贝叶斯定理,中央限制定理以及随机过程的简介。在课程的第二部分中,这些想法将应用于包括参数估计,假设测试,回归和机器学习生成模型的统计任务。学习目标的学生成功完成课程
我们使用密度函数理论模拟的δ-5硼单层作为碱金属(AM)和碱 - 地球金属(AEM)离子电池的阳极材料的电化学性能。探索了Δ-5硼M on洛耶木中各种金属原子(M)的电子特性,吸附,扩散速率和存储行为。我们的研究表明,电子和金属离子传输(0.493-1.117 eV)具有较高的电导率和低激活屏障,表明快速充电/放电速率。此外,发现LI,Na和K的δ-5硼单层的理论能力大于商业石墨的理论能力。AM和AEM的平均开路电压相当低,在0.34-1.30 V的范围内。我们的结果表明,δ-5硼单层单层可能是锂离子和非锂离子可充电电池中有希望的阳极材料。关键字:2D材料;吸附;储能;模拟;扩散简介
我们研究 CFT 和黑洞中纠缠的结构和动力学。我们使用局部纠缠度量,即纠缠轮廓,它是冯·诺依曼熵的空间密度函数,具有一些附加属性。纠缠轮廓可以在许多 1 + 1d 凝聚态系统和黑洞蒸发的简单模型中计算。我们计算了由分裂淬灭激发的状态的纠缠轮廓,并找到了 2d CFT 中低能非平衡态纠缠轮廓的通用结果。我们还计算了与极值 AdS 2 黑洞耦合的非重力浴的轮廓,并发现由于岛相变,轮廓在浴内仅具有有限的支撑。我们使用的特定纠缠轮廓方案量化了通过与条件互信息的连接,从边缘重建浴状态的程度,而消失的轮廓则反映了对块岛区域免受边界状态擦除的保护。
摘要:电池运营商的重要收入来源通常是在拍卖行中仲裁每小时价格的利差。如果风险是考虑因素,则最佳方法是具有挑战性的,因为这需要估计密度函数。由于每小时价格不正常,也不是独立的,因此从单独估计的价格密度的差异产生差异通常是棘手的。因此,对所有日内每小时扩散的预测被直接指定为含有密度的上三角基质。该模型是一种灵活的四参数分布,用于产生动态参数估计,以外源性因素为条件,最重要的是风,太阳能和天上的需求预测。这些预测支持每天在单个和多个周期运行的存储设施的最佳日程安排。本文认为,优化的利用差价是创新的,而不是每小时的价格,这在降低风险方面更具吸引力。与传统的每日高峰和低谷交易的方法相反,根据天气预报的不同,发现多个交易是促销和机会主义的。
量子算法被吹捧为解决一些经典难题(如量子力学模拟)的一种方法。所有量子算法的最终结果都是量子测量,通过量子测量可以提取和利用经典数据。事实上,许多现代混合经典方法本质上是具有短量子电路描述的状态的量子测量。在这里,我们比较和研究了从量子模拟中提取时间相关的单粒子概率密度的三种方法:直接 Z 测量、贝叶斯相位估计和谐波反演。我们在时间相关密度函数理论的潜在反演问题背景下测试了这些方法。我们的测试结果表明直接测量是更好的方法。我们还重点介绍了其他两种方法可能有用的领域,并报告了使用 Rigetti 的量子虚拟设备进行的测试。这项研究为量子计算的即将应用提供了一个起点。
我们通过密度函数理论计算研究了原型Mott绝缘子NIS 2的电子结构,在这些计算中,我们明确地说明了非共线性抗铁磁序,如最近在IsoelectRonic Analog Ni(S,SE,SE)2中建立的。对于金属NIS 2在高压下,我们的计算预测了Fermi表面拓扑和体积,这与最近的量子振荡研究非常吻合。但是,我们发现,即使在环境压力下,密度功能理论也错误地预测了金属基态,类似于以前的非磁性或共线性抗抗铁磁模型。通过包括Hubbard相互作用U和现场交换J,金属相被抑制,但即使是这样的扩展模型也无法描述金属到构造的相位转变的性质,并错误地描述了绝缘阶段本身。这些结果突出了更复杂的计算方法的重要性,甚至在绝缘阶段深处,远离莫特绝缘相变。
在扭曲的双层系统中观察到的多样化和有趣的现象,例如石墨烯和过渡金属二核苷,引发了有关它们可能托管的新兴效应的新问题。然而,在足够大以进行光谱研究的规模上实现这些结构的实际挑战仍然是一个巨大的障碍,导致直接测量扭曲过渡金属二甲基化元素双层的电子带结构的直接测量很少。在这里,我们提出了一个系统的纳米级角度分辨光发射光谱调查,对散装,单层和扭曲的双层WS 2的光发射调查,小扭曲角为4.4°。实验结果与基于高对称方向的密度函数理论的理论计算进行了比较。出乎意料的是,电子带结构的测量表明,结构弛豫以4.4°扭曲角出现,并形成了大型,不WIST的双层区域。