沙门氏菌是一种粮食性的致病细菌,在全球范围内引起沙门氏菌病。此外,沙门氏菌被认为是食品安全和公共卫生的严重问题。几种包括氨基糖苷,四环素,酚和B-乳酰胺的抗菌类别用于治疗沙门氏菌感染。抗生素已经开了数十年,以治疗由人类和动物医疗保健中细菌引起的感染。然而,大量使用抗生素会在包括沙门氏菌在内的几种食源性细菌中产生抗生素耐药性(AR)。此外,沙门氏菌的多药耐药性(MDR)急剧增加。除了MDR沙门氏菌外,全球据报道,除了MDR沙门氏菌,广泛的耐药性(XDR)以及PAN耐药(PDR)沙门氏菌。因此,增加AR正在成为严重的普遍公共卫生危机。沙门氏菌开发了许多机制,以确保其对抗菌剂的生存。针对这些抗生素的最突出的防御机制包括酶促失活,通过EF伏特泵从细胞中排出药物,改变药物的结构以及改变或保护药物靶标。此外,沙门氏菌的生物膜和质粒介导的AR形成,增强了其对各种抗生素的耐药性,使其在医疗保健和食品行业环境中都是充满挑战的病原体。本综述仅着重于提供沙门氏菌中AR机制的详细概述。
本文介绍了一种新颖的胎儿脑部自动生物测量方法,该方法旨在满足中低收入国家的需求。具体而言,我们利用高端 (HE) 超声图像为低成本 (LC) 临床超声图像构建生物测量解决方案。我们提出了一种新颖的无监督域自适应方法来训练深度模型,使其对图像类型之间显著的图像分布变化保持不变。我们提出的方法采用双对抗校准 (DAC) 框架,由对抗途径组成,可强制模型对以下方面保持不变:i) 来自 LC 图像的特征空间中的对抗性扰动,以及 ii) 外观域差异。我们的双对抗校准方法估计低成本超声设备图像上的小脑直径和头围,平均绝对误差 (MAE) 为 2.43 毫米和 1.65 毫米,而 SOTA 分别为 7.28 毫米和 5.65 毫米。
摘要。网络安全的进步对于一个国家的经济和国家安全至关重要。随着数据传输和存储的指数增加,迫切需要新的威胁检测和缓解技术。网络安全已成为绝对的必要性,每天每天都有越来越多的传输网络,导致数据存储在服务器上的数据的指数增长。为了阻止将来的复杂攻击,有必要定期更新威胁检测和数据保存技术。生成对抗网络(GAN)是一类无监督的机器学习模型,可以生成合成数据。gan在基于AI的网络安全系统中变得重要,例如入侵检测,隐肌,密码学和异常检测。本文对将gans应用于网络安全的研究进行了全面综述,包括对这些研究中使用的流行网络安全数据集和甘恩模型架构的分析。
在这项研究中,我们评估了自主驾驶(AD)系统中增强学习的鲁棒性(RL),特别是反对对抗攻击的稳健性。我们采用了Karavolos等人提出的基于Q学习的AD模型。[1]的简单性,是我们分析的基础。此选择使我们能够在简单的Q学习方法和更复杂的RL系统之间进行明显的比较。我们设计了两个威胁模型,以模拟对基于RL的广告系统的对抗性攻击。第一个模型涉及在RL模型的细调中注入未发现的恶意代码,使其容易受到对抗性扰动的影响,这可能会导致在特定的触发条件下碰撞。第二个威胁模型旨在通过直接改变RL模型在特定触发条件下的行动决策来引起碰撞,这代表了一种更隐秘的方法。基于这些威胁模型,我们对两种主要情况的实证研究提出:操纵传感器输入和直接对动作的扰动。研究结果表明,尽管基于RL的AD系统表现出针对传感器输入操纵的弹性,但在受到直接动作扰动时它们会表现出脆弱性。主要的和宽容的场景涉及更改传感器读数,例如在偏心转弯期间,这可能会误导系统并可能导致事故。这对于小误差很大的操作至关重要。第二种情况直接扰动动作,更多地是对基于RL的AD系统脆弱性的理论研究,而不是实用的现实世界威胁。
媒体联系人:Gina Kirchweger gina@lji.org 848.357.7481即时释放T细胞,T细胞上升以与肠道科学家的感染作斗争,展示了一个特殊的T细胞如何通过小肠里漫游,以打击ca la jolla,ca -your ut ut ut ut ut ut ut。围绕小肠排列的细胞必须平衡两个看似矛盾的工作:吸收食物中的营养,同时保持警惕的病原体试图入侵您的身体。“这是病原体可以潜入的表面,” La Jolla免疫学研究所(LJI)助理教授Miguel Reina-Campos博士说。 “对于免疫系统来说,这是一个巨大的挑战。”那么,免疫细胞如何确保肠道安全?由LJI,加州大学圣地亚哥分校的科学家领导的新研究和艾伦免疫学研究所表明,抗原病原体的免疫细胞称为组织居民记忆CD8 T细胞(T RM细胞)经历了令人惊讶的转化,并恢复了小肠中的感染。实际上,这些细胞实际上在组织中上升较高,以在病原体传播到更深,更脆弱的地区之前对抗感染。“肠道中的组织已经发展为为免疫细胞浸润提供信号 - 将免疫细胞放置在特定的地方,因此它们具有更好的阻止病原体的能力,” Reina-Campos说,他与联合首先研究的新自然研究的第一作者和UC Sanivo和UC Sanivo的Alexander Monell一起担任了新自然研究的第一作者,并获得了UC Sanivo和联合Aneror Author Author Authorian Authorian Anegianian Heeg,M.Div。 和艾伦免疫学研究所和圣地亚哥分校的Ananda W. Goldrath博士。 新发现增加了免疫细胞适应特定组织的越来越多的证据体。和艾伦免疫学研究所和圣地亚哥分校的Ananda W. Goldrath博士。新发现增加了免疫细胞适应特定组织的越来越多的证据体。Reina-campos认为这些“组织居住”的免疫细胞可能是未来癌症的特定器官肿瘤的关键参与者。
对抗训练(AT)是提高深度神经网络鲁棒性的最常用机制。最近,一种针对中间层的新型对抗攻击利用了对抗训练网络的额外脆弱性,输出错误的预测。这一结果说明对抗训练中对抗扰动的搜索空间不足。为了阐明中间层攻击有效的原因,我们将前向传播解释为聚类效应,表征神经网络对于与训练集具有相同标签的样本的中间层表示相似,并通过相应的信息瓶颈理论从理论上证明了聚类效应的存在。随后我们观察到中间层攻击违反了 AT 训练模型的聚类效应。受这些重要观察的启发,我们提出了一种正则化方法来扩展训练过程中的扰动搜索空间,称为充分对抗训练(SAT)。我们通过严格的数学证明给出了经过验证的神经网络鲁棒性界限。实验评估表明,SAT 在防御针对输出层和中间层的对抗性攻击方面优于其他最先进的 AT 机制。我们的代码和附录可以在 https://github.com/clustering-effect/SAT 找到。
IL-27 是 IL-6/IL-12 细胞因子超家族的成员,主要由抗原呈递细胞分泌,特别是树突状细胞、巨噬细胞和 B 细胞。IL-27 具有抗病毒活性,可调节针对病毒的先天和适应性免疫反应。IL-27 在病毒感染环境中的作用尚不明确,促炎和抗炎功能均有描述。在这里,我们讨论了 IL-27 在几种人类疾病病毒感染模型中的作用的最新进展。我们重点介绍了 IL-27 表达调控的重要方面、感染不同阶段的关键细胞来源及其对细胞介导免疫的影响。最后,我们讨论了在人类慢性病毒感染的背景下更好地定义 IL-27 的抗病毒和调节(促炎与抗炎)特性的必要性。
人工智能(AI)方法是现代世界不可或缺的一部分。如今,每个与智能手机互动的人都与AI接触(Herget,2024)(Wired Insider,2021)。 自从大型语言模型(LLMS)(CF(BSI,2024a)易于获得BSI的评论)以来,公众对AI存在的意识已广泛传播。 但是,自引入LLM之前,AI算法支持或自动执行决策过程。 Propublica的报告,即预测模型用于确定美国犯罪嫌疑人的累犯风险,受到了很大的关注(Angwin等,2016)。 在金融领域,基于AI的预测模型用于支持贷款申请的决定或预测金融市场的发展(Aziz等,2022)。 此外,使用基于AI的决策支持系统进行诊断和治疗患者的治疗,目前已在医学中进行了研究或部分实施(社论,2024年)(皇家放射学院,等,2023)(BSI,2024年)。 这些是高度敏感的领域,在这种领域中,错误的决定可能会对公民造成社会,法律,财务或健康损害。如今,每个与智能手机互动的人都与AI接触(Herget,2024)(Wired Insider,2021)。自从大型语言模型(LLMS)(CF(BSI,2024a)易于获得BSI的评论)以来,公众对AI存在的意识已广泛传播。但是,自引入LLM之前,AI算法支持或自动执行决策过程。Propublica的报告,即预测模型用于确定美国犯罪嫌疑人的累犯风险,受到了很大的关注(Angwin等,2016)。在金融领域,基于AI的预测模型用于支持贷款申请的决定或预测金融市场的发展(Aziz等,2022)。此外,使用基于AI的决策支持系统进行诊断和治疗患者的治疗,目前已在医学中进行了研究或部分实施(社论,2024年)(皇家放射学院,等,2023)(BSI,2024年)。这些是高度敏感的领域,在这种领域中,错误的决定可能会对公民造成社会,法律,财务或健康损害。
作者:E Kim · 2020 · 被引用 29 次 — 或者,防御可以通过预处理、量化或压缩来处理模型的输入 [47, 11, 17, 19, 28]。我们的工作是独特的,不...
1。重组质粒设计7 2。初始质粒提取7 3。消化和连接7 4。转换8 5。质粒提取,纯化和DNA测序8 6。蛋白质表达8 7。蛋白质纯化9