整个生命周期 - 从原材料提取到车辆的制造,组装和使用阶段,再到材料的回收(寿命末期)。检查了几个影响类别。其中一种是CO2-排放,而将很小的其他气体转化为所谓的CO2均值。此测量单元使得可以比较所有温室气体对气候的影响。对于组件的每个处理步骤,使用基于标准化平均值的特殊软件确定排放。当涉及到特别密集的制造步骤时,例如电池电池的生产,我们使用各自供应商提供的特定数据,而不是平均值。此过程也被确定为特定的生命周期评估。这确切显示了实施的措施具有哪些影响 - 以及实际上必须抵消多少二氧化碳。生命周期评估的结果经过独立机构的验证和认证。回收材料(也是回收材料)回收材料是从工业和消费者废物中重新处理的新产品中使用的工业和消费者废物的二手材料。在塑料的情况下,其中包括宠物瓶或旧渔网。这种塑料废物通过几个过程步骤处理成颗粒,然后可以送入塑料制造过程中。取决于对组件的给定要求,可以在组件中的小比例回收材料,直到完全由可回收材料制成的组件。
ZürichEmbotech是一种屡获殊荣的软件扩展,开发了最前沿的自动驾驶解决方案,重点是港口码头和物流中心的自动码头拖拉机(ATT)等私人地面应用程序,以及乘用车工厂中自动化的车辆杂车(AVM)。我们通过利用自2013年以来一直在开发的实时优化技术来提供安全的自主运输。我们的团队由高技能的员工组成,对卓越和效率充满热情。我们正在寻找高度有动力的人来帮助我们解决明天最复杂的挑战之一,并将我们的公司提升到一个新的水平。我们正在寻求供应链和采购经理,以优化我们的供应链以及零件和服务的总拥有成本,将购买流程与业务目标保持一致并促进可持续实践。我们正在寻找一个有动力的全能者,他准备扮演广泛的责任:您将制定和实施全球采购策略,包括负责我们自主驾驶解决方案部分的运营采购。您将分析和影响成本结构和供应商趋势,并协商条款以确保有利的定价,支付条件和服务水平协议(SLA)。最后,您将确保最佳的备件库存并主动管理寿命末期组件。
摘要:将固定存储系统引入意大利电网是必要的,以适应不可编程的可再生能源的能源份额的增加并达到渐进的脱碳目标。在此框架中,生命周期评估是评估固定存储系统整个生命周期(即其可持续性)期间环境影响的合适工具。进行了基于原发性和文献数据的整个生命周期评估(NMC)532(NMC)532和NMC 622)的锂离子电池(锂 - 铁磷酸(LFP),镍 - 山基 - 磷酸盐(NMC)532和NMC 622)。LCA结果表明,能源消耗(主要是在细胞生产过程中),电池设计(尤其是粘合剂选择),库存准确性和数据质量是可以强烈影响结果的关键方面。关于电池构建阶段,LFP电池的性能要比NMC电池更好,但是当包括寿命末期(EOL)阶段时,NMC细胞性能与LFP的性能非常接近。敏感性和不确定性分析证实,结果(除淡水富营养化指标除外)的特征是低分散体,并且在不同的电池寿命阶段的能量混合选择能够极大地影响整体影响。使用与电池电池生产相关的主要和更新的数据,例如本文中使用的数据,对于获得可靠的结果是必要的,而对欧洲生产线的应用是本文的新颖性。
大规模木材的结构涉及使用工程木材产品,例如跨层压木材(CLT)和胶层型木材(Glulam),用于梁,柱和面板等结构组件。质量木材在碳固隔方面具有优势,因为木材捕获并在生长过程中存储二氧化碳。另一方面,钢铁是由铁矿石和煤制造的,在生产过程中导致了大量的温室气体排放。但是,钢结构的寿命更长,可以在使用结束时回收,从而有可能降低整体环境影响。这项研究考虑了从物质提取到寿命末期的整个生命周期的质量木材和钢结构结构的比较分析[2]。生命周期评估(LCA)方法可用于量化与每种材料相关的碳排放,并考虑到诸如日志记录,铣削,制造,运输,建筑和拆除等过程。通过检查多种方案和施工类型,该研究旨在全面了解大型木材和钢铁之间选择的碳足迹含义。未来的研究方向可能涉及探索混合构造方法,这些方法结合了质量木材和钢元素,以优化环境性能,同时利用每种材料的优势。此外,可持续林业实践,木材处理技术和钢铁生产过程的进步可以进一步减少两种材料的环境足迹[3]。
摘要。随着计算能力的进步,半导体制造和操作的环境成本已成为关键的关注。但是,当前的可持续性指标无法量化现代处理器的基本构件晶体管一级的碳散发。本文引入了每个晶体管(CPT)for-mula的碳,这是一种新颖的方法和绿色实施度量,以测量从制造到寿命末期的半导体芯片的CO 2足迹。通过整合硅晶体生长,晶圆生产,芯片制造和运营功率耗散的排放,CPT公式为评估计算硬件的维持能力提供了科学严格的基准。使用Intel Core i9-13900k,AMD Ryzen 9 7950x和Apple M1/M2/M3处理器的现实世界数据,我们揭示了令人震惊的见解 - 制造的排放占主导地位,贡献了60-125千克CO 2,每CPU,远远超过了超过典型设备的运营装置。值得注意的是,尽管具有广泛的制造影响,苹果的高晶体管计数M系列芯片尽管能源效率,但与传统处理器相比,其碳足迹明显更大。这项研究为绿色计算计划建立了一个关键参考点,使行业领导者和研究人员能够在减少半导体相关的排放中做出数据驱动的决策,并为信息技术过程的绿色因素提供正确的时间。所提出的公式为可持续计算中的碳吸引芯片设计,监管标准和未来创新铺平了道路。
摘要:对两种不同类型的电解质(共溶剂和多盐)进行了测试,以用于高压 LiNi 0.5 Mn 1.5 O 4 || Si/石墨全电池,并与含碳酸盐的标准 LiPF 6 电解质(基线)进行了比较。在电池的使用寿命内对阳极和阴极进行原位事后 XPS 分析表明,基线电解质的 SEI 和 CEI 不断增长。在共溶剂电解质中循环的电池表现出相对较厚且长期稳定的 CEI(在 LNMO 上),而确定在 Si/石墨上形成了缓慢增长的 SEI。多盐电解质提供更多富含无机物的 SEI/CEI,同时也形成了本研究中观察到的最薄的 SEI/CEI。在基线电解质电池中发现了串扰,其中在阴极上检测到 Si,在阳极上检测到 Mn。观察发现,多盐电解质和共溶剂电解质均能显著减少这种串扰,其中共溶剂最有效。此外,多盐电解质主要在使用寿命末期检测到铝腐蚀,其中阳极和阴极上均有铝。虽然共溶剂电解质在限制串扰方面提供了更优越的界面性能,但多盐电解质提供了最佳的整体性能,这表明界面厚度比串扰发挥了更好的作用。结合它们的电化学循环性能,结果表明多盐电解质为高压电池提供了更好的电极长期钝化。关键词:LNMO-Si/石墨电池、固体电解质界面、SEI、阴极电解质界面、CEI、表面分析、离子液体电解质
表S1注意:[1]分别在2023-2030和2023-2050期间达到1.5°C目标的平均年度投资要求分别在2030年和2050年的投资行中显示。近年来所有投资数字均为目前的美元;近年来用于指标的细节是:[2] 2020; [3] 2030年和2050年的净容量添加净容量不包括寿命末期的替换库存; [4] 2022; [5] 2022; [6] 2022; [7] 2022; [8] 2022; [9] 2020; [10] 2021; [11] 2020年 - 不包括非能用途; [12] 2020; [13] 2020; [14]在最终用途,地区供暖,生物燃料和基于生物的创新燃料中需要对可再生能源的未来投资; [15] 2022; [16]近年价值是2010年至2020年之间的平均值; [17]未来对节能和效率的投资包括基于生物的塑料和有机材料,化学和机械回收以及能量回收; [18] 2021; [19] 2020; [20] 2022; [21] 2022; [22] 2022; [23] 2021; [24]绿色氢的份额在2030年为40%; [25]绿色氢的份额在2050年为94%; [26] 2022; [27]在电气层,基础设施,H 2个电台,Bunkering设施和长期存储中所需的未来投资; [28] 2022; [29]包括在天然气加工,氢,其他燃料供应,电力和热量中的CO 2捕获,行业,直接空气捕获运营中的设施,2022年; [30]当前的总捕获对应于燃料供应,2022; [31]2022。ccs/u =碳捕获和存储/使用; BECCS =生物能源,碳捕获和存储; EV =电动汽车; re =可再生能源; yr =年; m 2 =平方米; ej = exajoule; gt = gigatonne。
海上行业对温室气体的数量,尤其是IMO允许由船只发射的CO 2面临越来越多的限制。碳捕获技术有望大大减少船舶上的CO 2排放,并且通过从废气中填充CO 2,与LNG驱动的容器兼容。这项研究集中在一个问题上:“一旦将CO 2捕获到船上,该如何处理?”。进行了三倍的可行性研究,以证明从与技术,经济和排放相关的水平上,基于船舶的碳捕获供应链的可行性。供应链由捕获,运输和寿命末期组成。对技术,经济和排放相关的可行性进行了评估。诸如碳捕获系统的运输距离,板载CO 2的存储容量和资本支出(CAPEX)以及诸如碳税和利用收入之类的外部条件,事实证明是最有影响力的元素,这些要素是在3到5年内的投资捕获的最大范围,并在3到5年内捕获了碳的投资时间,并在3到5年内保持了重新范围,并触发了该元素,并在30到5年内及时触发了该元素。分别为40%和70%。诸如碳捕获系统的运输距离,板载CO 2的存储容量和资本支出(CAPEX)以及诸如碳税和利用收入之类的外部条件,事实证明是最有影响力的元素,这些要素是在3到5年内的投资捕获的最大范围,并在3到5年内捕获了碳的投资时间,并在3到5年内保持了重新范围,并触发了该元素,并在30到5年内及时触发了该元素。分别为40%和70%。诸如碳捕获系统的运输距离,板载CO 2的存储容量和资本支出(CAPEX)以及诸如碳税和利用收入之类的外部条件,事实证明是最有影响力的元素,这些要素是在3到5年内的投资捕获的最大范围,并在3到5年内捕获了碳的投资时间,并在3到5年内保持了重新范围,并触发了该元素,并在30到5年内及时触发了该元素。分别为40%和70%。
西特市市长布鲁斯·阿·哈雷尔(Bruce A.WHEREAS, urban trees, forests, and riparian ecosystems are critical green infrastructure that provide essential benefits by helping to cool our city during increasing heatwaves, lessen the urban heat island effect, mitigate stormwater runoff, sequester carbon, filter other pollutants, provide habitat for urban wildlife, improve physical and mental health for residents, and, in ways that are relevant to location and species, maintain cultural heritage and部落身份;鉴于,最近的研究表明,西雅图的树冠覆盖层在2016年至2021年之间有所减少,这是由我们城市公园和邻里住宅区内树冠的下降所领导的;鉴于西雅图的边缘化社区不成比例地缺乏树冠。数据显示,与主要富裕的白人社区相比,黑色,土著和有色人种(BIPOC)社区的覆盖率较低(在10%至20%之间)。贸易和气候变化继续促进新型物种引入本地生态系统和城市树冠。另外两个危险的害虫,铜桦树钻和海绵蛾,已经到达西雅图。该城市的特定底层地区包括雷尼尔谷,下杜瓦米什和乔治敦;而且,西雅图的目标是将其树冠的覆盖范围从2021年的28.1%增加到到2037年至少30%,并改善了树木的健康状况,并改善了整个城市的树木健康和公平的树木分配,以支持健康的社区并提高对气候变化的弹性;鉴于气候变化正在创造更热,干燥的环境。改变季节性降水会造成干旱压力,威胁着树木的健康,并使年轻树木难以建立;鉴于,在西雅图种植的许多树木既不是本地的,也不是适应气候的,但它们的寿命末期或某种结合的终结,使它们无法承受延长的夏季干旱;鉴于,在未来几十年中,引入疾病和害虫对该市的树冠构成了重大威胁。翡翠灰bore虫(Emerald Ash Borer)于2022年在波特兰发现了全国各地的灰树,并有可能消灭西雅图的整个灰树种群。虽然健康的树木可以更好地抵御害虫和疾病,但干旱压力的树木和更高的温度更容易受到损害和死亡的影响;和
首尔,韩国abtract这项研究研究了韩国媒体所描绘的对生物降解塑料的社会兴趣,分析了趋势,主题和相关关键词,以了解公众的看法和话语。大数据分析是在2014年至2023年之间使用Bigkinds平台的104个主要韩国媒体媒体的新闻文章进行的。分析了提到可生物降解塑料和相关关键字的文章频率。总共确定了4,403篇文章,覆盖范围在2021年达到峰值,然后略有下降。关键字分析揭示了PHA和PLA等“环保”材料的重点,以及诸如回收和商业化之类的概念。媒体对可生物降解的塑料的关注大大增加了,这反映了公众对传统塑料可持续替代方案的认识。但是,诸如退化条件,废物管理整合和经济可行性等挑战需要进一步关注。k eywords可生物降解的塑料; Bigkinds平台; Bigkinds;韩国;可持续性1。在当代社会中,塑料,尤其是不可生物降解的品种的塑料,已成为无数的应用中不可或缺的材料,从包装到建筑,以及[1]以外,这些材料的环境影响,这些材料的环境影响是由它们的持续性和抵抗来降级的,具有良好的可持续性和可持续性[2],并具有良好的可持续性[2]。尽管塑料废物在垃圾填埋场和自然栖息地中的积累,再加上其在海洋环境中的污染,强调了迫切需要可以减轻这种环境影响的可行替代方案[3]。在这种情况下,可生物降解的塑料作为一种有前途的解决方案,预示着它们在自然条件下通过微生物作用将其分解为水和二氧化碳的能力[4]。通过细菌,真菌和藻类促进的这种分解过程与环境中常规塑料的寿命形成了鲜明的对比[5]。此外,可生物降解塑料的生产多功能性来自包括生物量和基于化石燃料的化合物在内的各种原材料,这增加了它们作为可持续的替代品的吸引力[6]。可生物降解的塑料的环境益处扩展到其寿命末期,可以在适当的条件下堆肥,从而将其重新整合到生态周期中而不会留下有害残留物[7]。这种属性在焚化过程中的有毒物质的较低发射,将可生物降解的塑料定位为可环友好的替代品,用于其不可降解的对应物。此外,生物量在生物塑料生产中的利用强调了向可再生资源的转变,有助于减少碳排放,并进一步与可持续性原则保持一致[8]。