我们将介绍一种新的芯片优先 FOWLP 替代方案,该替代方案可满足大量需要 FOWLP 等封装技术的应用的需求。这种新封装已在 ASE 投入生产一年多,并使用“芯片最后”方法来解决增加可用互连焊盘面积的问题。已用铜柱 (Cu) 凸块凸起的芯片被批量回流到低成本无芯基板上,然后进行包覆成型,该包覆成型也用作芯片底部填充。Cu 柱允许以 50 µm 或更小的间距直接连接到芯片焊盘,从而无需在芯片上形成 RDL。使用嵌入式迹线允许细线和间距低至 15µm 或更小,并直接键合到裸铜上。Cu 柱键合到铜迹线的一侧,焊球或 LGA 焊盘直接位于铜的另一侧。这使得基板实际上只与走线中使用的铜一样厚,并使最终封装的厚度达到 400µm。由于这使用现有的大批量封装基础设施,因此可以轻松实现更复杂的组装,包括多个芯片、包含无源元件和 3D 结构。我们将此封装结构指定为“扇出芯片后封装 (FOCLP)”对于高端应用,我们将展示使用高密度基板工艺用于要求更高的芯片后扇出封装的能力关键词芯片先、芯片后、扇出、晶圆级封装
摘要:由于广泛的抗菌耐药性,微生物感染的治疗变得越来越艰巨。某些传染性细菌侵入并局部局部在宿主细胞内,保护细菌免受抗菌治疗和宿主的免疫反应,这一事实进一步加剧了治疗挑战。为了在细胞内生存中生存,这种细菌部署了与宿主细胞受体相似的表面受体,以隔离铁,这是一种从宿主铁结合蛋白(尤其是乳酸铁蛋白和转移蛋白)中的毒力的必不可少的营养素。在这种情况下,我们旨在靶向巨噬细胞和细菌表达的乳铁蛋白受体。因此,我们准备并表征了乳铁蛋白纳米颗粒(LF-NP),其中载有抗菌天然生物碱,小berberine或sanguinarine的双重药物组合,以及万古霉素或咪毕林。我们观察到,分化的THP-1细胞对药物载荷的LF-NP摄取增加,荧光细胞比例最高为90%,在存在游离乳铁蛋白的情况下,荧光细胞的摄取量增加到约60%,表明LF-NPS的靶向能力。与游离药物组合相比,封装的抗生素药物鸡尾酒有效清除了金黄色葡萄球菌(纽曼菌株)。然而,封装的药物和游离药物都表现出对难以治疗的脓肿(光滑变体)的抑菌作用。总而言之,这项研究的结果证明了乳铁蛋白纳米颗粒对靶向抗生素药物鸡尾酒的靶向递送的潜力。关键字:细胞内细菌,乳铁蛋白纳米颗粒,靶向药物递送,药物组合,纳米医学
图 1:TINKER 概览 公众意识和行业对进一步小型化此类传感器封装的需求是汽车行业不断努力将此类设备集成到车身(如保险杠和前照灯)中而不是将它们连接起来(例如,对于 LIDAR 设备,则连接在车顶)的主要驱动力。安全(对于驾驶员和其他人来说)是汽车行业最重要的关键方面。因此,高级驾驶辅助系统 (ADAS) 和自动驾驶汽车需要高价值和高性能的 RADAR 和 LIDAR 系统。目前的瓶颈是此类传感器设备的尺寸相对较大、重量较重以及功耗较大。由于这些因素在汽车内受到严格限制,因此迫切需要进一步小型化并提高功能性并有效利用资源。
公众意识和行业对进一步小型化此类传感器封装的需求是汽车行业不断努力将此类设备集成到车身(如保险杠和前照灯)中而不是将它们连接起来(例如,对于激光雷达设备,则将其连接在车顶)的主要驱动力。安全(对于驾驶员和其他人来说)是汽车行业最重要的关键方面。因此,高级驾驶辅助系统 (ADAS) 以及自动驾驶汽车需要高价值和高性能的雷达和激光雷达系统。目前的瓶颈是此类传感器设备的尺寸相对较大、重量较重以及功耗较大。由于这些因素在汽车中受到严格限制,因此迫切需要进一步小型化并提高功能性和高效利用资源。
Elke Kraker 在格拉茨大学学习物理学,并于 2004 年获得硕士学位。随后,她开始攻读博士学位。在格拉茨大学,她专注于光化学传感器与有机电子学的结合,并于 2008 年获得博士学位。2012 年,她加入了莱奥本材料中心有限公司的“微电子材料”业务部门,并在那里担任“3D 集成和封装的可靠性和分析”小组的负责人。她的主要工作重点是开发微电子领域材料特性的测试和方法以及可靠性测试的开发和评估。自 2020 年起,她将领导莱奥本材料中心的“微电子材料”部门。
Fortisase将配置的ZTNA连接规则推向ForticLient端点。在端点设备上,当用户试图从这些规则访问网络资源时,ForticLient会聆听到目标资源的连接,即目标地址和端口,然后将连接请求转发到Fortigate Application Gateway。可以使用SSL/TLS协议加密堡垒和Fortigate之间的流量,并在其内部封装的目的地的基础流量进行加密。换句话说,TCP转发规则允许ForticLient拦截到目标地址和端口的请求,然后将其转发到ZTNA应用程序网关。请参阅ZTNA TCP转发访问代理示例。
抽象的二维过渡金属二分元化是下一代光电学的领先材料,但是基本问题是商业化的基本问题。这些问题首先包括在低温下观察到的强烈低能量宽发光峰(L-PEAKS)的广泛争议的缺陷和应变诱导的起源。其次,氧气在通过化学吸附和物理吸附来调整性质中的作用很有趣,但挑战性地理解。第三,我们对六角硼(HBN)封装的益处的物理理解不足。使用一系列样品,我们将氧气,缺陷,吸附物和对单层MOS 2的光学性质的贡献解脱出来。与氧化样品相比,通过温度和功率依赖性的光致发光(PL)测量证实,对于氧辅助化学蒸汽沉积(O-CVD)样品,与氧辅助化学蒸汽沉积(O-CVD)的急剧红移相比,与脱氧于130 meV一起证实。 异常,O-CVD样品在室温(CF去角质)下显示出很高的A-EXCITON PL,但在低温下降低了PL,这是由于应变诱导的直接诱导的直接型带直接在低缺失的O-CVD MOS 2中。 这些观察结果与我们的密度功能理论计算一致,并由拉曼光谱学支持。 在去角质样品中,带电的O正常被识别为热力学上有利的缺陷,并创建差距态。 封装的有益作用源于减少带电的O Adatoms和吸附物。通过温度和功率依赖性的光致发光(PL)测量证实,对于氧辅助化学蒸汽沉积(O-CVD)样品,与氧辅助化学蒸汽沉积(O-CVD)的急剧红移相比,与脱氧于130 meV一起证实。异常,O-CVD样品在室温(CF去角质)下显示出很高的A-EXCITON PL,但在低温下降低了PL,这是由于应变诱导的直接诱导的直接型带直接在低缺失的O-CVD MOS 2中。这些观察结果与我们的密度功能理论计算一致,并由拉曼光谱学支持。在去角质样品中,带电的O正常被识别为热力学上有利的缺陷,并创建差距态。封装的有益作用源于减少带电的O Adatoms和吸附物。这项实验性理论研究发现了每个样品中缺陷的类型,使您可以理解缺陷,应变和氧对条带结构的综合作用,并丰富了我们对封装影响的理解。这项工作提出了O-CVD作为创建光电学高质量材料的一种方法。
通过功率循环测试对使用改进的互连技术的最新标准双功率模块进行老化调查 Yi Zhang a,* 、Rui Wu b 、F. Iannuzzo a 、Huai Wang aa AAU Energy,奥尔堡大学,丹麦奥尔堡 b Vestas Wind Systems A/S,丹麦奥胡斯 摘要 为硅和碳化硅设备开发了最新标准“新型双”功率模块,以满足高可靠性和高温电力电子应用日益增长的需求。由于新封装刚刚开始投放市场,其可靠性性能尚未得到充分研究。本文研究了基于新封装的 1.7 kV/1.8 kA IGBT 功率模块的功率循环能力。对功率循环前后的电气和热性能都进行了研究。在 Δ T j = 100 K 和 T jmax = 150 ° C 的条件下经过 120 万次循环后,芯片和键合线均没有明显的性能下降。尽管如此,在测试环境中,在约 600 k 次循环后,已达到导通电压 (V ce ) 增加的寿命终止标准。进一步的扫描声学显微镜测试发现,疲劳位置从传统的近芯片互连(例如,键合线剥离)转移到直接键合铜 (DBC) 基板和底板层。考虑到新封装的循环寿命是传统功率模块的十倍以上,预计随着互连技术的进一步改进,热机械疲劳将不再是限制寿命的机制。同时,随着先前的瓶颈(例如,键合线)得到解决,一些新的疲劳机制(例如,DBC 的分层)在新封装中变得明显。
图2:MCC-DSR NP表征和内在化。(a)图绘制了MCC-DSR双重药物纳米颗粒的流体动力直径。显示为平均值±S.D.的数据(n = 3)。(b)双重药物纳米颗粒的冷冻物图像。比例尺:200 nm。(c)图显示了在人血清中孵育48小时的MCC-DSR双NP的大小和ZETA潜力的百分比变化。(d)PBS稳定性图在30天内显示了PBS中MCC-DSR NP的大小和ZETA潜力。C中显示的数据是平均值±S.E.M。 (n = 3)。 (e)IBMDMS的代表性显微镜图像以时间依赖的方式(0H至8H)封装的荧光颗粒内化。 核用核染色。 比例尺:100μm。 (f)通过共聚焦显微镜成像的荧光纳米颗粒的细胞摄取的定量分析。 (g)IBMDMS对不同浓度的5FAM颗粒的细胞摄取的流式细胞仪分析。 显示的数据是平均值±S.E.M。 (n = 3)。 通过单向方差分析和Dunnett的多重比较测试进行统计分析。 *p <0.05,** p <0.01,*** p <0.001。C中显示的数据是平均值±S.E.M。(n = 3)。(e)IBMDMS的代表性显微镜图像以时间依赖的方式(0H至8H)封装的荧光颗粒内化。核用核染色。比例尺:100μm。(f)通过共聚焦显微镜成像的荧光纳米颗粒的细胞摄取的定量分析。(g)IBMDMS对不同浓度的5FAM颗粒的细胞摄取的流式细胞仪分析。显示的数据是平均值±S.E.M。(n = 3)。通过单向方差分析和Dunnett的多重比较测试进行统计分析。*p <0.05,** p <0.01,*** p <0.001。