摘要 - 最近,由于其固有的快速转弯,自定义建模,更容易的制造和具有成本效益的实现的功能,因此,近期是针对原型复杂和共形射频(RF)电路的一种非常有效的解决方案。一种可商购的导电丝,伊维利(Electifi)最近被多个研究人员报道,作为使用增材制造技术替换印刷电路板上传统铜痕迹的潜在候选者。使用融合细丝制造方法的添加剂制造方法,本文根据针对太空出生应用的Planar TMM4基板的改进的导电电丝丝的改进版本提出了3D打印的微带贴片天线,例如,3D印刷的卫星,太空层次套件,以及零层次的实验等。也是NASA的最新利益。此外,此处还介绍了全波模型与天线的3D打印原型之间的详细比较分析。针对合适的空间应用,天线尺寸已针对S波段(2 - 4 GHz)的2.56 GHz的工作频率进行了优化。
本文介绍了一种用于中小型无人机 (UAV) 飞行控制和气动数据收集研究的高频传感器数据采集系统 (SDAC)。该系统重量轻、功耗低,工作频率为 100 Hz,具有以下特点:高频、高分辨率六自由度 (6-DOF) 惯性测量单元 (IMU),配有全球定位系统 (GPS) 接收器、3 轴磁力计、皮托管、七个 10 位模数转换器 (ADC)、十六个 12 位模数转换器、一个 14 位模数转换器、二十个数字输入/输出 (I/O)、八个脉冲宽度调制 (PWM) 信号输入、一个 40 英里下行链路收发器、一个开放串行端口和一个开放 CANbus 端口,以及高达 64 GB 的板载存储。数据采集系统完全由商用现货 (COTS) 组件制成,从而降低了系统成本和实施时间。SDAC 将各种传感器流组合成统一的高保真状态数据流,该数据流被记录下来以供以后进行空气动力学分析,并同时转发到单独的处理单元,例如自动驾驶仪。
参数 最小值典型值最大值 单位 工作频率 27 31 GHz 28V 小信号 小信号线性增益 18.5 20 dB 输入回波损耗 -35 -20 dB 输出回波损耗 -26 -16 dB 28V 晶圆上脉冲功率 Psat(27 dBm 时) 42 dBm 功率增益(27 dBm 时) 19.1 19.6 20.1 dB P1db 41.20 42 42.5 dBm PAE(27 dBm 时) 30.5 32.5 34 % 最大 PAE 31 32.9 33.8 % 24V、25⁰C 固定 CW 外壳温度 Psat(28 dBm 时) 38.1 39 39.6 dBm 功率增益(28 dBm 时) 15.3 16.9 17.8 dB PAE(28 dBm 时) 19.1 22 24.7 % 最大 PAE 24 28.4 % 漏极电压 28 V 第 1 阶段栅极电压 -3.925 V 第 2 阶段栅极电压 -3.925 V 第 1 阶段 Idq 240 mA 第 2 阶段 Idq 960 mA
背景和理由:开槽波导阵列 (SWA) 天线通常用于雷达应用,其设计规范要求窄波束宽度、高增益、低旁瓣和承载相对高功率的能力。SWA 天线为满足这些要求提供了良好的解决方案。大多数 SWA 天线都是使用 CNC 加工、电火花蚀刻 (EDM) 或钎焊制造的。这些制造方法始终取决于加工公差、制造精度和刀具半径。然而,在制造金属结构时最明显的问题是重量,而制造公差问题会降低制造天线的重复性和性能,尤其是在工作频率增加的情况下。对于太空应用,重量问题是一个特别困难的问题,很明显,为此类星际任务节省的每一克重量都非常重要。这就是我们的新专有技术在解决重量、重复性和加工公差问题方面变得有用的地方。项目旨在:1. 设计基于目标技术的 Ka 波段开槽波导阵列天线工程模型,采用射频
移动通信领域(5G,6G),(自动)移动性和物联网(智能城市,可穿戴设备,对象跟踪,智能电网,视频安全性)的抽象发展在万维世界研究和工业环境中都是主题的。为此,需要更高的传输带宽,因此需要更高的工作频率> 60 GHz。为了能够利用这一潜力,需要新的技术来产生高频电路,而距离较窄的导体轨道在10-30 µm的范围内都可以实现较窄的距离。为此,在Fraunhofer Ikts开发了厚膜糊,可以使用紫外线将其照相,并可以实现所需的几何分辨率。目前的工作旨在概述Fraunhofer Ikts的可刺激性(PI)糊状物中的当前发展,并应比较PI Technologies。一方面是基于掩盖的PI工艺,适用于大规模生产,另一方面是激光直接成像(LDI)工艺,它提供了制造原型制造的可能性。关键词激光直接映像,LTCC,mmwave,可刺激的糊状,厚实的胶片糊。
1. 简介 可部署水下通信系统的需求涵盖许多应用,包括潜水员通信、通信寻呼机、主动声纳浮标、海洋哺乳动物通信系统、声学对抗措施和便携式研究系统。这些系统必须能够可靠地运行于长距离(30 海里)和短距离(5 海里)。所有这些系统都要求结构紧凑、能量存储和运行效率高。此外,通常还需要数据加密和宽带响应均衡滤波等专门功能。本文介绍了三种可部署水下通信系统。每个系统都有自己独特的功能,可针对特定应用量身定制。宽带声学传输系统 (BATS) 传输可听声学信号,用于海洋哺乳动物研究等应用。声学通信系统 (ACOMS-D/P) 是一种具有加密功能的远程通信寻呼机。这两个系统都使用桶板弯张换能器。可部署声纳系统 (DSS) 是一种便携式声纳系统,使用 Sensor Technology Limited 的 SQ09 换能器,工作频率为 24 kHz。本文介绍了系统组件、信号处理、系统配置和性能。
摘要 - 这篇文章研究了峰值电场强度(PEFIS)和允许的最大激发电压(MEVA)电感链路无线电源传递(WPT)到嵌入人体中的医疗植入物中。在环形,六边形和圆形的几何形状中的分段和未段的天线,宽度为2、1和0.2 mm。广泛的模拟表明,与未分段的天线相比,分割的天线可以显着减少PEFI并增加特定吸收率(SAR)约束内的MEVA。通过分割,PEFI的降低在更高的工作频率下更有效。宽度较小的天线将辐射较小的PEFI。具有相同的天线宽度,六边形天线辐射最大的PEFI,其后是其圆形和环形的对应物。在研究下的所有天线中,宽度为2 mm的未段的六角形天线辐射为最大的PEFI,而宽度为0.2 mm的分段环形天线辐射最小的PEFI。考虑到PEFI和MEVA,首选环形几何形状中的天线,并且应将分割应用于六边形天线。当天线宽度大于1 mm时,建议天线的分割。
(续) • 绘图功能: • 峰值绘图速度为每秒 800 Mpixels(内部工作频率为 100 MHz) • 2D 绘图功能:点、线、三角形、多边形、BLT 和图案绘图 • 3D 绘图功能:点、线和三角形绘图以及通过 Z 缓冲去除隐藏表面 • 特殊效果:抗锯齿、粗体 / 虚线处理、alpha 混合、Gouraud 着色、纹理映射(双线性过滤、透视校正)和平铺 • 显示功能: • 支持的最大显示分辨率:1024 × 768 像素 • 彩色显示,可使用每像素 8 位的调色板,或直接使用每像素 16 位的 5 位 RGB 颜色 • 覆盖四层屏幕,其中下两层可分为左右部分 • 支持两个 64 × 64 像素的硬件光标 • 模拟 RGB 和数字 RGB 信号输出 • 能够使用外部同步模式 • 电源电压 :内部电路和 SDRAM 的两个电源分别为 2.5 V ± 0.2 V 和 3.3 V ± 0.2 V (用于 I/O 部分) • 封装 :208 针塑料 QFP(引脚间距为 0.5 毫米) • 工艺技术 :0.25 µ m CMOS
太阳辐射和风提供了用于加热和冷却的时间温度。0.005la e na 0.5 ba 0.5 tio 3 -0.06batio 3 -0.002TA是最适合能量收集的材料。通过调谐工作频率,负载电容和电阻进一步提高电压和功率输出。以0.04 Hz的频率获得6.7 m W的最大功率,负载电容为1 m f,电阻为25 m u。基于电感器(p e SSHI)的平行同步开关收获的非线性电路和电感上的混合同步开关收获(H E SSHI)用于增强功率。在P E SSHI和H E SSHI下,功率分别增加了54%和34.6%。但是,由于自触发过程和低能损失,因此首选H e SSHI用于促进。这项工作显示了无铅的式式式材料的潜力,用于在电路中损失和损失。©2022越南国立大学,河内。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要 — 本文报道了一种三通道、非连续、流形多路复用器,工作频率为 220 至 330 GHz,工作带宽为 40%。该结构采用一组脊状基片集成波导 (SIW) 进行设计和实现。与传统 SIW 设计相比,脊状 SIW 提高了阻带带宽,并将整体结构尺寸缩小了 35%。三工器采用英特尔开发的有机封装基板技术,具有四层厚铜金属层和连续沟槽通孔代替标准通孔围栏,可显著降低脊状 SIW 波导的欧姆损耗。在三工器结构的开发中采用了电磁电路建模和协同设计技术。使用带状毫米波晶圆探测测量制造的三工器,通带中的插入损耗为 3 ∼ 7 dB,每个通道滤波器的平均回波损耗优于 10 dB。测得的三个通道的阻带衰减均优于 27 dB。