最近,具有 25 nm T 栅极的 InP 基高电子迁移率晶体管 (HEMT) 已被证明可在 1.1 THz 下放大 [1],这使得传统电子设备在太赫兹应用方面比光学设备更具竞争力。尽管积极推动 T 栅极的占用空间变得更短以实现更高的工作频率现已成为热门研究课题,但针对 100 nm 以下 T 栅极的稳健且经济高效的 T 栅极工艺仍然是行业的首要任务。在本文中,我们将展示格拉斯哥大学在超短 T 栅极工艺开发方面的最新进展。该工艺涉及在 PMMA/LOR/CSAR 三层 EBL 光刻胶堆栈上进行单次电子束光刻 (EBL) 曝光。通过仔细控制光刻胶厚度、电子束剂量以及适当的显影剂和显影时间,我们开发了一种可靠且稳健的工艺,用于具有各种脚和头长度的 T 栅极。图 1 显示了 GaAs 半绝缘基板上典型 T 栅极的扫描电子显微镜 (SEM) 图像。与最先进的 T 门工艺[3][4]相比,新工艺具有多项优势,并且有可能将 HEMT 的 THz 操作占用空间进一步缩小至 20 纳米以下。我们将在会议上更详细地阐述该工艺。
摘要 —本文介绍了一种可调的新型死区控制电路,为电源转换器优化提供最佳延迟。我们的方法可以减少死区损失,同时提高给定电源转换器的效率和功率密度。该电路提供了一个可重构延迟元件,可为具有不同负载和输入电压的不同电源转换应用产生宽范围的死区。推导出降压转换器的最佳死区方程,并讨论了其对输入电压和负载的依赖性。实验结果表明,所提出的电路可以提供宽范围的死区延迟,范围从 9.2 ns 到 1000 ns。针对不同的电容负载 (CL ) 和工作频率 (fs ) 测量了所提出的电路的功耗。在 CL = 12 pF、V dd = 3.3 V 和 fs = 200 kHz 时,该电路在测得的死区范围内消耗的功率在 610 µW 到 850 µW 之间。当选择最小死区时间为 9.2 ns 时,所提出的死区发生器可以运行高达 18 MHz。所提出的电路占用面积为 150 µ m × 260 µ m。将制作的芯片连接到降压转换器以验证所提出的电路的运行。与死区时间为 T DLH = T DHL = 12 ns 的固定转换器相比,具有最小 T DLH 和最佳 T DHL 的典型降压转换器在 I Load = 25 mA 时的效率提高了 12%。
摘要 本文提出了一种低功耗宽带射频到基带 (BB) 电流复用接收器 (CRR) 前端,它同时利用了 1/f 噪声消除 (NC) 技术和有源电感器 (AI),工作频率为 1 GHz 至 1.7 GHz,适用于 L 波段应用,包括那些需要高调制带宽的应用。CRR 前端采用单电源,并与 BB 电路共享低噪声跨导放大器 (LNTA) 的偏置电流,以降低功耗。为了最大限度地减少下变频之前射频 (RF) 信号的损失,高阻抗 AI 电路将混频器输入与 CRR 输出节点隔离。1/f NC 电路可抑制泄漏到输出的 LNTA 低频噪声。带有 gm 增强的共栅极 LNTA 以及单端到差分 LC 平衡-不平衡转换器用于增强输入匹配、变频增益和噪声系数 (NF)。所提出的接收器采用 TSMC 130 nm CMOS 工艺制造,占用有效面积为 0.54mm 2 。输入匹配 (S 11 ) 在 1 GHz 至 1 . 7 GHz 范围内低于 − 10 dB。在本振 (LO) 频率为 1 . 3 GHz、中频 (IF) 为 10 MHz 和默认电流设置下,CRR 实现了 41 . 5 dB 的转换增益、6 . 5 dB 的双边带 (DSB) NF 和 − 28.2 dBm 的 IIP3,同时消耗 1.66 mA 电流,电源电压为 1 . 2 V。
在本文中,我们展示了一种用于卫星通信应用的低成本 7.25-7.75 GHz 两级低噪声放大器,其噪声系数低于 1 dB。采用 Rogers RT5880 基板上的微带技术(介电常数为 2.2,厚度为 0.508 mm)开发低噪声放大器。印刷电路板技术具有多种优势,例如成本低、重量轻以及制造过程后的可重新配置性,这些优势使该技术在商业和军事应用的卫星通信系统中具有吸引力。由于单片微波集成电路技术可提供更小尺寸的电路和高电气性能(尤其是在毫米波频率下),因此印刷微带技术可以成为集成电路技术的有力竞争对手,因为它具有经过验证的可靠性、更简单、更便宜和更快速的制造工艺以及 X 波段应用中可压缩的电气性能。此外,所提出的放大器是利用加州东部实验室的 Rogers-RT5880 上的 CE3512K2 晶体管开发的,并在匹配网络中使用了表面贴装器件以减小尺寸。此外,还实施了源生成和级间匹配拓扑,以简化匹配复杂性,从而增强噪声和增益。原型是利用 LPKF 原型机制造的。开发的 LNA 在工作频率带宽内表现出 23.5±0.5 dB 的测量增益,噪声系数小于 0.9 dB,输入/输出回波损耗优于 11.5 dB。此外,开发的放大器在中心频率处测量的载波干扰比为 -59 dBc,P1dB 为 13 dBm,同时消耗的总直流功率为 50 mW。
摘要:本文利用ATLAS TCAD器件模拟器从模拟、RF性能的角度探讨了环绕栅极无结渐变通道 (SJLGC) MOSFET 的潜在优势。系统地研究了横向渐变通道对电位、电场、载流子速度、通道能带的影响。本研究主要强调了 SJLGC MOSFET 的优越性能,表现出更高的漏极电流 (ID )、跨导 (gm )、截止频率 (f T )、最大振荡频率 (f max )、临界频率 (f K )。由于通道渐变的影响,SJLGC MOSFET 的漏极电流提高了 10.03%。SJLGC MOSFET 的 f T、f max 和 f K 分别提高了 45%、29% 和 18%,表现出更好的 RF 性能。 SJLGC MOSFET 相对于 SJL MOSFET 的优势进一步得到阐明,其固有电压增益 (gm / g ds ) 提高了 74%,表明其在亚阈值区域具有更好的应用。但在亚阈值区域,SJLGC MOSFET 的跨导产生因子小于 SJL MOSFET。由于较低的栅极间电容 (C GG ) 的影响,SJLGC MOSFET 的固有栅极延迟 (ζ D ) 与 SJL MOSFET 相比较小,表明其数字开关应用更好。模拟结果表明,SJLGC MOSFET 可以成为下一代 RF 电路的有力竞争者,该电路涵盖了 RF 频谱中的广泛工作频率。
摘要 - 对性能的持续追求推动了专业人员,以结合多个内核,缓存,加速单元或投机执行,使系统变得非常复杂。另一方面,这些功能通常会暴露出构成新挑战的意外漏洞。为了进行检查,可以利用缓存或投机执行引入的定时差异以泄漏信息或检测活动模式。保护嵌入式系统免受现有攻击是极具挑战性的,而且由于新的微体系攻击的持续崛起(例如,幽灵和编排攻击),这使它变得更加困难。在本文中,我们提出了一种新方法,该方法基于计数示意图,用于检测嵌入式系统介绍的微处理器中的微体系攻击。这个想法是将安全检查模块添加到系统中(无需修改保护器,而不是在保护下),负责观察被提取的说明,并识别和发出信号可能的可疑活动,而无需干扰系统的标称活动。可以在设计时(在部署后重新编程)对所提出的方法进行编程,以便始终更新Checker能够识别的攻击列表。我们将所提出的方法集成到了大型RISC-V核心中,我们证明了它在检测几种版本的幽灵,编排,Rowhammer和Flush+重新加载攻击方面的有效性。在最佳配置中,提出的方法能够检测到100%的攻击,没有错误的警报,并引入了大约10%的面积开销,大约增加了4%的功率,并且没有降低工作频率。
水生细菌对人体健康构成严重危害,因此需要一种精确的检测方法来识别它们。一种考虑到水生细菌危害的光子晶体光纤传感器已被提出,并且其在 THz 范围内的光学特性已被定量评估。PCF 传感器的设计和检查是在使用“有限元法”(FEM) 方法的程序 Comsol Multiphysics 中计算的。在 3.2 THz 工作频率下,所提出的传感器在所有测试情况下的表现都优于其他传感器,对霍乱弧菌的灵敏度高达 96.78%,对大肠杆菌的灵敏度高达 97.54%,对炭疽芽孢杆菌的灵敏度高达 97.40%。它还具有非常低的 CL,对于霍乱弧菌为 2.095 × 10 −13 dB/cm,对于大肠杆菌为 4.411 × 10 −11 dB/cm,对于炭疽芽孢杆菌为 1.355 × 10 −11 dB/ cm。现有架构有可能高效且可扩展地生产传感器,为商业应用打开大门。创新在于优化结构参数,以提高光纤对细菌存在的敏感性,从而改善太赫兹波和细菌细胞之间的相互作用。它针对细菌大分子吸收峰来提高灵敏度。局部场增强可能来自优化,它将 THz 振动集中在细菌相互作用更多的地方。通过改善散射,结构改变可以帮助通过细菌特征性的散射模式识别细菌。这些改进提高了传感器对痕量细菌的检测。这些因素结合起来可提高传感器对水生细菌的检测能力。在水环境中,这将带来更精确、更高效的检测,有助于实时监测细菌污染。这些发展可能会对公共卫生和水质控制产生重大影响。
摘要 多功能、可部署和可打包天线对于许多应用都非常重要,包括无人机、卫星通信(例如立方体卫星)和通用机载和星载通信系统。值得注意的是,这种天线为上述应用提供了新功能。在本文中,我们介绍了关于可折叠和物理可重构天线的新兴研究,这些天线可以改变其形状以适应和重新配置其电磁性能(例如工作频率、带宽、极化、波束宽度等)。 1. 简介 可重构、可调、多功能、可部署的天线系统已广泛用于支持无线通信系统的多种服务。电气和机械重构方法已经得到开发并应用于机载和星载系统的各种应用,例如通信、侦察、传感和能量收集 [1],[2]。最近推出的一类新的物理可重构天线是折纸天线 [3]。与传统天线相比,折纸天线具有独特的优势,例如性能可重构、可调性和高效存放。它们固有的电磁和机械多功能行为使它们适合便携式军事和太空应用,这些应用对空间要求严格(例如,小型卫星平台的空间限制)。此外,折纸天线变形的能力使得开发具有前所未有和变革性能力的新型电磁 (EM) 系统成为可能,例如:(a) 天线可以改变其几何形状,以根据时间调整其性能并实现多功能性,(b) 2-D 和 3-D 天线阵列可以改变其覆盖面积、形状和/或元件分离,以实现最佳波束成形、波束控制和扫描范围,以及 (c) 可重构频率选择表面可以改变其性能以支持可调和多功能天线和阵列的操作(见图 1)。[4] 中可以找到有关折纸天线和可展开电磁结构的最新评论。
摘要智能设备和无线设备数量的增加需要在较高频率频谱中进行更灵活的分配。动态频谱访问是解决频谱稀缺问题的主要候选者之一。电视白色空间(TVWS)提供了一种手段,可以随着传统的电视广播向数字广播的逐步切换而考虑到机会意义上的电视频带。带有迷你,微型或纳米电路包装中的智能设备,主要挑战之一是设计紧凑型收发器天线,适用于以超高频(UHF)频段运行的移动设备。本文简要概述了TVWS和提议的微带贴片天线设计。在MATLAB中设计和模拟了几何测量和天线参数。结果表明,在638 MHz工作频率和辐射模式下的高前到背部功率比下具有共振性能。辐射特性在方位角几乎是全向方向的,而在高度平面则是方向性的。后面有最小的辐射,因此,对于薄而纤细的设备,这将适合所需的应用关键词:认知无线电,微带,电视,白色空间1。引言无线通信的进步需要在较高频谱中利用更多的电磁频带,以在轻范围通信通道上增加带宽的能力。由于针对各种应用程序发明和制造了新的和创新的通信设备,因此频率资源的稀缺性也会增加。为了解决这个问题,正在利用一种称为动态频谱访问(DSA)的技术,该技术允许以有效有效的方式访问频段。数字切换或模拟电视频段被切换到数字格式允许使用
抽象以计算机科学为导向和以神经科学为导向的是开发人工通用智能(AGI)的两种通用方法。在这项研究中,使用用于AGI应用的神经科学方法开发了硅神经元晶体管。神经元行为(“加权总和和阈值”功能)基于互补的金属 - 氧化物 - 半导体(CMOS)负差异电阻(NDR)理论。神经元晶体管由UMC 180-nm商业标准CMOS流程实施,这是有益的,可以实现整个神经网络或与同一芯片上的其他CMOS电路集成。神经元tran-sistor由三个输入V G1,V G2和V G3组成,以及一个控制端子,V con,一个负载端子,V B(负载)和驱动程序端子,V B(驱动程序)。每个输入的宽度为1.8 µm,并且输入分别具有1、2和4填充物,即重量比为1:2:4。v B(负载)和V B(驱动器)使神经元晶体管更加类似于真正的生物神经元,与传统的人工神经网络相比,灵敏度的提高且复杂性较小。以10 kHz的最大频率测量神经元MOS晶体管。它的功率消耗极低,为<10-4 µ w,而占地面积为30×15 µm 2。随着过程特征大小的减小,芯片的工作频率可以增加一个数量级,而其功耗和足迹将减少。关键字:人工通用智能(AGI),CMOSFET电路,人工神经网络(ANNS),硅神经晶体管,负差异抵抗(NDR)分类(NDR)分类:集成电路(内存,逻辑,逻辑,模拟,RF,RF,RF,Sensor)