Acknowledgement ................................................................................................................................................................................. 2 Foreword ................................................................................................................................................................ 4 Table of contents ..................................................................................................................................................... 5 Abbreviations and acronyms ................................................................................................................................... 6 List of tables ............................................................................................................................................................ 7 List of figures ........................................................................................................................................................................................... 7 Executive summary ...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
● 我们希望为 WIPO 设计一个具有新主题领域的项目,该项目以识别和使用公共领域的发明为基础,为希望改善创新生态系统的欠发达经济体提供服务 ● 混合模式强调可访问性和灵活性 ● 我们还希望所有工具都能教授 NPD 流程之外的实用技能 ● 对于未来的用户,工具包如何鼓励自学和通过同行社区共享信息?
有很多 Python 包可用,但没有一个可以处理气候数据集的多维。它安装起来非常容易(一行命令),不需要任何特殊的计算机,并且适用于 Window、Mac 和 Linux/Unix 系统。Xcast 并行化代码,因此速度更快。它包括所有传统方法(MLR、PCR、CCA)和最先进的 AI/ML 方法(如 ANN、随机森林等)。它读取 NetCDF/Grib2/Zar 数据,而传统工具需要“ASCII 格式”。它还可以读取任何模型输出(NMME、C3S、S2S 和 SubX 或您自己的)。它不仅仅是一个“Jupyter 笔记本”,而是一个 Python 包。
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
参考文献 Bek, U. (2000) 风险社会:走向现代、进步社会 / 译文。由 V. Sedel'nik 和 N. Fedorova 译自德语。莫斯科,进步%传统。 383 页(俄语)。 Bir, S. (1965) 控制论和生产管理/翻译。摘自 V. Ia 的英语。阿尔塔耶夫;编辑作者:A. B. Cheliustkin;由 AI Berg 作序。第二版,补充莫斯科,科学。 392 页(俄语)。 Granovetter, M. (2009) 弱sviazei的强度。经济社会学,第10,页31–50。 (俄语)。 Kastel's, M. (2000) 信息时代/翻译。来自英语;编辑作者:OI Shkaratan。莫斯科国立大学—高等经济学院。 608 页(俄语)。 Lisenkova, AA (2021) 数字翻译中社会文化认同的转变。彼尔姆,彼尔姆国立文化学院。 286 页(俄语)。 Makliuen, M. (2003) 古腾堡星系:人类印刷文化的创造/翻译。摘自 A. Iudin 的英语。基辅,Nika%Tsentr。 432 页(俄语)。 Fuko, M. (1998) 生育诊所/翻译。来自法语,编辑并由 A. Sh 作序。特霍斯托夫。莫斯科,斯梅斯尔。 310 页(俄语)。 Shamaiu, G. (2020) 无人机理论/翻译。由 E. Blinov 译自法语。莫斯科,Ad Marginem Press,车库现代艺术博物馆。 280 页(俄语)。
● 引用您的来源。截至本文撰写时,生成式人工智能因未提供适当的引用来说明其在构建问题答案时从何处借用信息而臭名昭著。如果您使用生成式人工智能,则应尽可能引用原始来源,或者仅引用您在给定日期使用了给定的生成式人工智能引擎。同样,如果您使用人工智能生成图像,则应在图像标签中引用这一点。这是学术界的传统做法,既不应该令人惊讶也不应该造成不便,而且不将他人的工作归功于自己(即剽窃)也是合乎道德的。● 灵感和总结。使用生成式人工智能起草文档或将文档从 3 页缩短到 1 页可以节省大量时间。鉴于该技术目前容易出现错误和偏见,您应该仔细检查由 AI“危险……”(见下文)生成的任何此类材料,并考虑引用您对该技术的使用,如果它对最终产品有重大贡献。● 研究。尝试使用这项技术作为分析或研究工具,同时注意“危险……”(见下文),这对大学和整个社会都非常重要,因为我们正在努力应对一种与我们大多数人习惯的截然不同的技术。请与社区其他成员分享您学到的知识,即使是非正式的。
介绍。当今,人工智能(AI)及其创新是具有全球意义的全球趋势之一。其中一项创新就是情感人工智能(emotional AI/EAI),它被称为能够识别人类情感、及时处理并做出适当反应的革命性技术。专家认为,情感人工智能是确保人与机器之间建立情感导向沟通的工具。本文探讨了情感人工智能的具体内容、成就、潜在机遇和发展前景。方法和来源。采用哲学、社会心理学、比较和跨学科方法。本文内容基于国内外作者(B.Gertsel、D.Goleman、R.Picard、D.I.Dubrovsky、E.M.Proydakov等)撰写的专业文献、有关情感人工智能及其特征的科研成果和公开信息,特别是Alia Grig等人撰写的《情感人工智能:让人类世界变得更美好》。结果和讨论。情感人工智能课题的现实意义,决定了需要转向“情绪智力”(EI)概念作为情感人工智能的基本基础,这使得揭示人类情绪智力的本质特征及其与EII的区别成为可能。情感人工智能是现代人工智能的一项创新,其主要参与者是拟人机器人、文本、语音聊天机器人和视频机器人,积极向公众展示在情绪心理学领域获得的知识和技能,这些知识和技能正在当前人工智能的框架内得到改进。结论。目前,训练情感人工智能与人类互动已经有了一个系统的流程,EAI正在从现代应用人工智能的具体情况出发,根据新现实的挑战逐步发展。然而,在数字时代,人与机器、机器与人的沟通是相互关联的过程,在互动实践中,应致力于建立功利性和伙伴关系。当前人工智能的这种发展方向符合时代的要求,并引领其进一步发展——创造出一种新的通用人工智能,即“人类水平的人工智能”,预计这将极大地扩展人类和整个社会的能力。
● 合同审批与执行 ISUPP 1060 ● 电子和信息技术可访问性 ISUPP 1020 ● 平等机会、骚扰和非歧视 ISUPP 3100 ● HIPAA 合规性 ISUPP 1100 ● 采购 ISUPP 2560 ● 平等机会和平权行动 ISUPP 3080 ● 学术自由 ISUPP 4040 ● 学术诚信与不诚实 ISUPP 4000 ● 教师道德 ISUPP 4120 ● 学生行为准则 ISUPP 5000 ● 知识产权 ISUPP 7010 ● ISU 出口管制 ISUPP 7040 ● ITS 可接受使用 ISUPP 2400 ● ITS 访问控制 ISUPP 2410 ● ITS 采购、开发和维护 ISUPP 2420 ● ITS 资产管理 ISUPP 2430 ● ITS 信息安全 ISUPP 2500 ● ITS 安全角色和职责 ISUPP 2480
图 S1 。一般工作流程。左侧:使用小型数据集进行 TL 以聚焦 Prior(生成模型)的状态,随后将其用于具有自定义 MPO 目标的 RL。右侧:对生成模型的不同状态进行采样时化合物分布的示意图。A ) 一般 Prior 是在 ChEMBL 上训练的初始生成模型的状态。与其他状态相比,它生成给定 SMILES 字符串的概率分布更均匀。B ) 聚焦先验是生成模型的一种状态,在该状态下,它可以以比其他区域更高的概率生成某些化学空间区域。C ) 生成模型作为聚焦先验进入 RL,并在整个过程中导航化学空间以寻找高 MPO 分数区域。导航过程中获取的数据属于 MPO 得分较高的区域,可作为新颖想法的来源。
