摘要 — 印度尼西亚是世界第二大椰子生产国,其产品之一是椰果,椰果由椰子水通过发酵工艺加工而成。椰果是生物纤维素的一种来源,可用作高级隔音材料的原料。本研究的目的是确定生物纤维素椰果的干燥工艺,以用于隔音的潜在应用,并通过测试水分含量和扫描电子显微镜 (SEM) 分析形成的纤维素纤维。干燥过程在 (95 -100) o C 的温度下进行。在干燥的前 10 分钟内,椰果中遗忘的水蒸气似乎几乎是总水分含量的 ± (30-40)%,即游离水。这是因为椰果样品中所含的游离水含量仍然很大且容易释放,而在干燥的最后阶段,蒸发水分需要很长时间,因为它是结合水。干燥一直进行到获得恒定质量。本研究中平衡含水量 (Me) 的值采用亨德森方程,计算得出的值为 16.430828706902。在干燥结果中发现,干燥产生的生物纤维素椰果含有少量水分,真菌生长的可能性越来越小,从形态学上看生物纤维素可以用作隔音材料,因为它有孔隙和凹痕来容纳传入的声能,因此隔音应用的潜力很大。关键词:椰果、生物纤维素、隔音、吸音系数。1. 引言印度尼西亚是世界上第二大椰子生产国,椰子种植面积为 388 万公顷,如果使用比例为 97%(小农庄园),椰子产量最多可达 320 万吨。 34 年来,椰子种植园从 1980 年的 166 万公顷增加到 2017 年的 389 万公顷(工业部,2010 年)。与斯里兰卡和印度相比,印尼的椰子生产力仍然较低。无论是出口还是国内市场,对椰子制品的需求都在持续增长。椰子衍生产业可以通过多样化加工产品来发展,包括椰果、椰干、初榨油、油脂化学品和椰干。椰果的主要产品除了作为出口材料外,还可以通过多样化椰果衍生产品来利用其他潜力。将椰果中所含的生物纤维素用于生物片材、生物纤维素面膜、生物纤维纸浆和生物纤维粉,为产品多样化和增加出口提供了机会。目前,有很多向发达国家出口生物片材产品、生物纤维素面膜、生物纤维纸浆和生物纤维粉的需求 [10]。生物纤维素是一种由微生物发酵椰子水产生的多糖。椰果或其他使用微生物木醋杆菌的材料,如果将其放入在受控过程中富含氮和碳的椰子水中,它将能够形成椰果纤维。在这种情况下,细菌会产生酶,可以将糖排列成纤维素纤维链。在椰子水中生长的众多微生物中,成千上万的
高速宽带分频器广泛应用于正交信号产生[1, 2]、时间交织THA和ADC系统[3, 4, 5]以及其他高速通信领域[6]。目前,已有多种基于不同拓扑和工艺的分频器被报道。特别地,InP DHBT在相同尺寸的器件下具有更高的击穿电压和更好的频率性能[7, 8],这意味着InP DHBT是高速分频器电路的更好选择。但是,电路的工作频率范围不能超过与器件工艺有关的截止频率ft的几分之一[9],这限制了电流型逻辑 (CML) 分频器的工作频率[9, 10]。为了提高分频器电路的高频性能,应努力提高相同ft 的器件的工作频率的利用率。已经发表了许多增强技术来扩展分频器的工作频率范围,例如电感峰值[9, 11, 12, 13],分流电阻负载[14, 15, 16],非对称锁存器[17],动态分频器[18, 19, 20, 21, 22]和双射极跟随器[23, 24]。然而,在电路设计中最大限度地利用器件ft的报道很少。本信
在过去的二十年中,激光焊接技术已成为一种广泛接受的工业工具。如今,该工艺已在许多行业中得到广泛应用。在某些情况下,它提供了以前无法获得的组件制造机会。本论文描述了激光焊接工艺的技术发展,并介绍了许多实验研究的结果。组成该论文的七篇论文研究了激光焊接工艺机制的技术发展的各个方面以及工业应用。
在过去的二十年中,激光焊接技术已成为一种被广泛接受的工业工具。如今,它是一种在许多行业中具有广泛应用的工艺。在某些情况下,它提供了以前无法获得的组件制造机会。本论文描述了激光焊接工艺的技术发展,并介绍了许多实验研究的结果。组成论文的七篇论文研究了激光焊接工艺机制的技术发展的各个方面以及工业应用。
这篇硕士论文是一次非常有趣且收获颇丰的经历。我通过在 ALTRAN 和 AIRBUS 实习获得的机会是一次不可忽视的经历,无论是在社会关系方面还是在发展我的技术技能方面。我要特别感谢电气安装部门的全体团队成员,感谢他们的热情帮助我融入这些公司;特别是我的两位导师 Nicolas PHILIPPE 和 Michel BAREILLE,感谢他们给予我的大力帮助。我还要感谢我在查尔姆斯理工学院的导师 Torbjörn THIRINGER,他以无比的耐心帮助我解决了所有困难的行政问题,并在硕士论文期间给予了我很大的支持。最后,我要感谢我的家人在我待在瑞典期间的支持,因为没有他们的帮助,这次美妙的冒险就不可能实现。
加速材料插入 (AIM) 计划提供了将材料开发周期缩短高达 50% 的机会,从而减少了新材料和新工艺所需的前置时间。该计划的成立是为了彻底改变设计师和材料工程师的互动方式,实现计算材料科学应用和与设计工程工具集成的飞跃,并创建一个设计/材料团队可以学习和借鉴先前开发成果的环境。AIM 系统的核心是设计师知识库,它提供了一个框架,用于管理实验数据、执行描述处理、微观结构、属性和可生产性的链接模型,以及计算系统预测的置信区间。