摘要 用户机界面将从用户测量的生物信号映射到外部设备的控制命令。从生物信号到设备输入的映射由解码算法执行。用户和解码器的适应——共同适应——为提高不同用户和应用程序的界面包容性和可用性提供了机会。用户学习可实现强大的界面控制,可跨环境和上下文进行推广。解码器适应可以个性化界面,考虑日常信号变化并提高整体性能。因此,共同适应创造了塑造用户和解码器系统的机会,以实现强大且可推广的个性化界面。然而,共同适应会创建一个双学习者系统,用户和解码器之间具有动态交互。设计共同适应界面需要新的工具和框架来分析和设计用户解码器交互。在本文中,我们回顾了用户机界面中的自适应解码、用户学习和共同适应,主要是用于运动控制的脑机、肌电和运动学界面。然后,我们讨论了共同适应接口的性能标准,并提出了一种设计用户-解码器共同适应的博弈论方法。
异位脂质沉积、线粒体损伤和炎症反应会导致糖尿病肾病 (DKD) 的发展;然而,这些过程之间的机制联系仍不清楚。在这项研究中,我们证明神经酰胺合酶 6 (CerS6) 主要位于肾小球的足细胞中,并在两种不同的糖尿病小鼠模型中上调。足细胞特异性 CerS6 敲除可改善雄性糖尿病小鼠和患有阿霉素诱发肾病的雄性小鼠的肾小球损伤和炎症反应。相反,足细胞特异性 CerS6 过度表达足以诱发蛋白尿。从机制上讲,CerS6 衍生的神经酰胺 (d18:1/16:0) 可以与线粒体通道蛋白 VDAC1 的 Glu59 残基结合,引发线粒体 DNA (mtDNA) 泄漏,激活 cGAS-STING 信号通路,最终促进肾脏的免疫炎症反应。重要的是,DKD 和局灶节段性肾小球硬化 (FSGS) 患者肾活检样本中的足细胞中 CERS6 表达增加,并且 CERS6 的表达水平与肾小球滤过率呈负相关,与蛋白尿呈正相关。因此,我们的研究结果表明,针对 CerS6 可能是治疗蛋白尿性肾病的潜在治疗策略。
摘要 — 风电作为一种绿色能源,正在全球范围内迅速发展,同时,为缓解风电波动性而部署的储能系统 (ESS) 也应运而生。风电和储能系统的容量确定已成为一个亟待解决的重要问题。风电场的尾流效应会导致风速不足和下游风力涡轮机发电量下降,然而,这在电力系统的容量确定问题中很少被考虑。本文提出了一个双目标分布稳健优化 (DRO) 模型,用于确定考虑尾流效应的风电和储能系统的容量。建立了一个基于 Wasserstein 度量的模糊集来表征风电和需求的不确定性。具体而言,风电不确定性受第一阶段确定的风电容量的影响。因此,所提出的模型是一个具有内生不确定性(或决策相关不确定性)的 DRO 问题。为了求解所提出的模型,开发了一种基于最小 Lips-chitz 常数的随机规划近似方法,将 DRO 模型转化为线性规划。然后建立了迭代算法,并嵌入了求取最小Lipschitz常数的方法。案例研究证明了考虑尾流效应的必要性和所提方法的有效性。
响应环境压力源的神经炎症是许多神经系统和精神疾病的重要途径。对免疫介导的压力的反应会导致表观遗传变化和神经精神疾病的发展。异硫氰酸酯(ITC)在对抗神经系统和器官系统中对抗氧化应激和炎症方面表现出了希望。虽然来自西兰花的硫烷是生物医学应用中最广泛研究的ITC,但在包括Moringa在内的许多十字花科和其他蔬菜中都发现了ITC及其前体葡萄糖醇。在这篇综述中,我们研究了ITC的临床和临床前研究,从2018年从2018年改善神经精神疾病(神经发育,神经退行性疾病和其他),包括目前的临床研究,包括对几项持续临床研究的方案的记录。在此期间,进行了16项临床研究(9项随机对照试验),其中大多数报道了磺胺对自闭症谱系障碍和精神分裂症的影响。我们还回顾了80多项临床前研究,研究了ITC治疗与大脑相关功能障碍和疾病的治疗。迄今为止的证据表明,ITC具有极大的毒性治疗这些疾病的潜力。作者呼吁精心设计的临床试验,以将这些有效的植物化学物质转化为治疗实践。
人类已经发展出一套复杂的免疫系统,能够快速检测和应对病原体或组织损伤。该系统有两个分支:先天免疫系统和适应性免疫系统。适应性免疫系统由 B 细胞和 T 细胞组成,它们表达大量可检测独特抗原的高度特异性受体。该系统最初的反应比先天免疫系统慢。例如,在感染期间,适应性免疫反应可能需要数天时间才能生效(Kumar et al., 2018)。然而,在对病原体的第一次反应后就会产生免疫记忆,因此在再次受到攻击时反应会更快。先天免疫系统由巨噬细胞、中性粒细胞和小胶质细胞等含有种系编码的模式识别受体 (PRR) 的细胞组成。 PRR 检测表示病原体或危险相关分子模式 (PAMP 和 DAMP) 的固定序列,这些序列分别包含外来或宿主衍生的激活基序 ( Janeway 和 Medzhitov,2002 )。识别这些分子序列是先天免疫系统产生足够反应的关键。激活后,PRR 会在数分钟内诱导信号级联,触发通路特异性转录因子,促进关键炎症基因的转录,这些基因
“咽喉痛”(咽炎)是世界上大多数地区常见的儿童疾病。大多数咽喉痛都是短暂的病毒感染,不会引发并发症。然而,相当一部分咽喉痛是由细菌感染引起的。细菌性咽喉痛最常见的病因是 A 组链球菌 (GAS)。在易感年轻人中,咽喉 GAS 感染可引起异常免疫反应,称为风湿热 (RF)。1,2 这种异常免疫反应会导致心脏发炎(心脏炎),如果反复感染 GAS,心脏瓣膜会结疤。心脏瓣膜受损表明患有风湿性心脏病 (RHD)。随着时间的推移,心脏瓣膜会结疤而无法正常运作,导致心力衰竭,并增加心律失常、心脏瓣膜感染和妊娠并发症的风险。全球每年有近 50 万人患上 RF,至少有 1500 万人随后因 RHD 而出现瓣膜损伤。 3, 4 RF 和 RHD 的可靠流行病学数据不足;真正的疾病负担可能比目前的估计高出几倍。4, 5 每年全球约有 50 万人死于 RHD。3 这些死亡绝大多数是过早的;平均而言,死于 RHD 的人年龄在 40 岁以下。6, 7
摘要:乙醇是燃烧、天体化学和凝聚相溶剂中研究较为基础的分子。它的特点是具有两个甲基转子以及反式(反)和左旋构象异构体,已知它们的能量非常接近。本文我们表明,基于对振动零点态的严格量子计算,使用新的从头算势能面 (PES),基态类似于反式构象异构体,但存在向左旋构象异构体的显著离域。这解释了关于识别和分离这两个构象异构体的实验问题。氘化 OH 基团时,这种“泄漏”效应会部分猝灭,这进一步证明了需要采用量子力学方法。采用扩散蒙特卡罗和全维半经典动力学计算。新的 PES 是通过 Δ 机器学习方法从预先存在的低级密度泛函理论表面开始获得的。使用相对较少的从头计算 CCSD(T) 能量,将该表面提升至 CCSD(T) 理论水平。标准测试的校正 PES 与直接从头计算结果之间的一致性非常好。还报告了侧重于反式扭转运动的一维和二维离散变量表示计算,结果与实验结果相当一致。■ 简介
2. 我对第一剂疫苗的反应非常不好,我害怕接种第二剂疫苗。我该怎么办?有时人们在接种一剂疫苗后会感到非常不舒服。这很好地表明他们的免疫系统反应良好 - 但感觉可能很糟糕。这并不意味着第二剂疫苗的反应会相同或更糟。如果您想与临床顾问交谈,请致电您当地的卫生部门报告免疫接种后不良事件 (AEFI)。临床工作人员将直接与您交谈 - 或跟进您讨论您的反应和担忧。3. 最初正在考虑宗教豁免,但现在没有。为什么?在权衡了患者、居民、医疗保健人员和机构内医务人员的健康利益与在这些环境中提供护理和服务的未接种疫苗人员的利益(出于医学禁忌症以外的原因)之后,并考虑到保持健康劳动力的重要性、公共卫生和医疗系统当前运行的压力、COVID-19 对人口医疗保健服务的影响,以及应对更多的 COVID-19 集群和疫情以及应对更多重症患者将给本已不堪重负的医疗保健系统带来的负担,以及安置未接种疫苗人员所固有的风险——邦妮·亨利医生决定不考虑任何豁免请求,根据《公共卫生法》第 43 条的规定,除非是基于疫苗接种的医学禁忌症。
我们报告了激光驱动的聚合等离子体聚变靶的数值模拟。这些“倒置电晕”聚变靶可用于研究反向流动和聚合稀薄等离子体流,先前的实验已经证明了它们作为中子源的潜力。该方案由沿空心塑料壳内表面排列的燃料层组成,该塑料壳经过激光烧蚀并向内向靶中心扩展。这些靶中产生的等离子体流在汇聚时最初几乎不会发生碰撞,从而导致喷射流相互穿透时产生宽相互作用长度尺度和长相互作用时间尺度。这种动力学效应会影响组成离子的混合 - 单流体流体动力学模拟无法正确捕捉到这种现象。在这里,我们使用两种不同的方法进行数值模拟:(1) HYDRA 中的单流体模拟,以及 (2) Chicago 代码中的动能离子、流体电子混合粒子胞内 (PIC) 模拟。结果表明,最初几乎无碰撞的等离子体前沿相互渗透很深,导致空间和时间上相互作用区域更宽,从而导致显著的束流-束流融合。这两种方法对燃料层厚度对中子产额的影响做出了不同的、可测试的预测。
本论文涉及汽车应用中配备永磁同步电机 (PMSM) 的电力驱动系统的控制系统结构的设计和分析。本文考虑了无传感器控制,即没有机械转子位置传感器的矢量控制,并彻底分析了锁相环类型的速度和位置估算器。本文提出了一些修改方法,以允许在整个速度范围内运行,并提高估算器处理较大速度估算误差的能力。结果表明,转子凸极效应会影响估算器的动态特性,在某些参数选择和操作条件下,估算器的动态特性可能会变得不稳定。因此,本文推导出简单的参数选择规则,以保证稳定性并简化实施。对于转子凸极效应较小或可忽略的 PMSM,本文还考虑了一种仅从反电动势中提取位置信息的估算器。该估算器基于众所周知的“电压模型”,并提出了一些修改,以通过保证启动时的同步并允许稳定的旋转反转来提高估算器在低速范围内的性能。通过控制实现损耗最小化的理论应用于用于混合动力电动汽车推进的 PMSM 驱动器。通过更强的磁场削弱,可以降低基本铁芯损耗,但代价是增加电阻损耗。研究表明,然而