本论文的目标是在张量网络领域取得进展,这是一种强大的压缩方法,然后解决理论物理学中最困难的一些问题。具体来说,目标之一是攻克强耦合量子场论,这些网络具有(最近引入的)连续极限。这篇论文将主要涉及理论,但目标是最终获得有形的数值输出。这篇论文由 PSL jeune équipe 启动基金资助。它的实际位置将位于 Inria Paris,在 Inria 团队 QUANTIC 内,这是 Inria、Mines 和 ENS Paris 的合资企业。感兴趣的候选人应尽快与我们联系,理想情况下可以先从实习开始(也可能获得资助)以熟悉该主题,然后再考虑 3 年的承诺。
大脑中周期性信号称为稳态视觉诱发电位 (SSVEP),由闪烁刺激引起。它们通常通过回归技术检测,该技术需要相对较长的试验长度来提供反馈和/或足够数量的校准试验才能在脑机接口 (BCI) 的背景下可靠地估计。因此,对于设计用于使用 SSVEP 信号操作的 BCI 系统,可靠性是以速度或额外记录时间为代价的。此外,无论试验长度如何,当存在影响对闪烁刺激的注意力的认知扰动时,无校准回归方法已被证明会出现显著的性能下降。在本研究中,我们提出了一种称为振荡源张量判别分析 (OSTDA) 的新技术,该技术提取振荡源并使用新开发的基于张量的收缩判别分析对其进行分类。所提出的方法对于只有少量校准试验可用的小样本量设置非常可靠。此外,它在低通道数和高通道数设置下都能很好地工作,试验时间短至一秒。 OSTDA 在不同实验设置(包括具有认知障碍的实验设置)下的表现与其他三种基准最新技术相似或明显更好(即具有控制、听力、口语和思考条件的四个数据集)。 总体而言,在本文中,我们表明 OSTDA 是所有研究管道中唯一能够在所有分析条件下实现最佳结果的管道。 2021 由 Elsevier BV 出版
摘要。本文提出了一种新的贝叶斯回归实现,该回归具有标量协变量的多维数组(张量)响应。最近,各个学科中出现了复杂的数据集,迫切需要设计具有张量值响应的回归模型。本文考虑了一种这样的应用,即在存在张量值大脑图像和标量预测因子的情况下,在 fMRI 实验中检测神经元激活。此应用的总体目标是识别由外部刺激激活的大脑空间区域(体素)。在此类应用和相关应用中,我们建议将所有细胞(或大脑激活研究中的体素)的响应一起回归为标量预测因子的张量响应,以考虑张量响应中固有的结构信息。为了估计具有适当细胞特定收缩的模型参数,我们提出了一种新的张量结构化回归系数多向断棍收缩先验分布,从而能够识别与预测因子相关的细胞。本文的主要创新之处在于,当细胞数量增长速度快于样本大小时,对张量响应回归中提出的收缩先验的收缩特性进行了理论研究。具体而言,在温和的假设下,张量回归系数的估计值在 L2 意义上逐渐集中在真实稀疏张量周围。各种模拟研究和脑激活数据分析从经验上验证了所提出的模型在细胞级参数估计和推断方面的良好性能。
摘要。目的。发作间期癫痫样放电 (IED) 发生在两次癫痫发作之间。IED 主要通过颅内记录捕获,通常在头皮上不可见。本研究提出了一种基于张量分解的模型,将头皮脑电图 (sEEG) 的时频 (TF) 特征映射到颅内脑电图 (iEEG) 的 TF 特征,以便以高灵敏度检测头皮上的 IED。方法。采用连续小波变换提取 TF 特征。将来自 iEEG 记录的 IED 段的时间、频率和通道模式连接成四向张量。采用 Tucker 和 CANDECOMP/PARAFAC 分解技术将张量分解为时间、频谱、空间和节段因子。最后,将来自头皮记录的 IED 和非 IED 段的 TF 特征投影到时间分量上进行分类。主要结果。模型性能通过两种不同的方法获得:受试者内和受试者间分类方法。我们提出的方法与其他四种方法进行了比较,即基于张量的空间分量分析方法、基于 TF 的方法、线性回归映射模型以及非对称对称自动编码器映射模型,然后是卷积神经网络。我们提出的方法在受试者内和受试者间分类方法中均优于所有这些方法,分别实现了 84.2% 和 72.6% 的准确率。意义。研究结果表明,将 sEEG 映射到 iEEG 可提高基于头皮的 IED 检测模型的性能。此外,基于张量的映射模型优于基于自动编码器和回归的映射模型。
张量网络理论和量子模拟分别是理解量子多体物理的关键经典和量子计算方法。在这里,我们介绍了混合张量网络的框架,其构建块由可测量子态和经典可收缩张量组成,继承了两者在有效表示多体波函数方面的独特特性。以混合树张量网络为例,我们展示了使用比目标系统小得多的量子计算机进行高效量子模拟。我们对我们的方法进行了数值基准测试,该方法用于查找最多 8 × 8 和 9 × 8 量子比特的一维和二维自旋系统的基态,其中操作分别仅作用于 8 + 1 和 9 + 1 个量子比特。我们的方法为使用中型量子计算机模拟大型实际问题提供了启示,在化学、量子多体物理、量子场论和量子引力思想实验中具有潜在的应用。
1 南开大学人工智能学院,天津 300350,中国;2 斯科尔科沃科学技术学院,莫斯科 121205,俄罗斯;3 杭州电子科技大学计算机学院,杭州 310018,中国;4 哥白尼大学信息学系,托伦 87-100,波兰;5 波兰科学院系统研究所,华沙 01-447,波兰;6 南开大学计算机学院,天津 300350,中国;7 阿根廷射电天文学研究所 IAR-CCT 拉普拉塔,CONICET / CIC-PBA / UNLP,Villa Elisa 1894,阿根廷;8 日本理化学研究所信息系统与网络安全总部计算工程应用部,和光市 351-0106,日本; 9 英国剑桥大学精神病学系,剑桥 CB2 8AH;10 西班牙加泰罗尼亚维多利亚中央大学数据与信号处理研究组,加泰罗尼亚 08500
动机:结合疗法已成为一种有力的治疗方式,以克服耐药性并提高治疗效果。然而,随着个人药物的数量,可能的药物组合数量的增加非常迅速,这使得在实践中无法进行全面的实验性筛查。机器学习模型提供了时间和成本良好的手段来帮助这一过程,以优先考虑最有效的药物组合,以进一步进行临床前和临床验证。然而,多种药物剂量和不同细胞环境中潜在相互作用模式的复杂性对药物组合效应的预测建模构成了挑战。结果:我们介绍了学习复杂的,高度时间柔性的方法,用于描述各种剂量和癌细胞膜的治疗剂组合的响应。该方法基于通过强大潜在张量重建的多项式回归。它结合了推荐的系统式功能,在不同上下文中索引响应值的数据张量以及化学和多摩s特征作为输入。我们证明,在预测性能和运行时间方面,Comboltr优于最先进的方法,并且即使在具有挑战性和实用的推理场景中也会产生高度准确的结果,在没有任何可用的组合和单层响应响应测量中,可以预测所有剂量 - 反应矩阵,并且在任何训练细胞系中都可以进行全新药物组合。可用性和实现:Comboltr代码可在https://github.com/aalto-ics-kepaco/comboltr上找到。联系人:tianduanyi.wang@aalto。fin或juho.rousu@aalto。补充信息:补充数据可在BreioNformatics Online获得。
动机:结合疗法已成为一种有力的治疗方式,以克服耐药性并提高治疗效果。然而,随着个人药物的数量,可能的药物组合数量的增加非常迅速,这使得在实践中无法进行全面的实验性筛查。机器学习模型提供了时间和成本良好的手段来帮助这一过程,以优先考虑最有效的药物组合,以进一步进行临床前和临床验证。然而,多种药物剂量和不同细胞环境中潜在相互作用模式的复杂性对药物组合效应的预测建模构成了挑战。结果:我们介绍了学习复杂的,高度时间柔性的方法,用于描述各种剂量和癌细胞膜的治疗剂组合的响应。该方法基于通过强大潜在张量重建的多项式回归。它结合了推荐的系统式功能,在不同上下文中索引响应值的数据张量以及化学和多摩s特征作为输入。我们证明,在预测性能和运行时间方面,Comboltr优于最先进的方法,并且即使在具有挑战性和实用的推理场景中也会产生高度准确的结果,在没有任何可用的组合和单层响应响应测量中,可以预测所有剂量 - 反应矩阵,并且在任何训练细胞系中都可以进行全新药物组合。可用性和实现:Comboltr代码可在https://github.com/aalto-ics-kepaco/comboltr上找到。联系人:tianduanyi.wang@aalto。fin或juho.rousu@aalto。补充信息:补充数据可在BreioNformatics Online获得。