11月12日,在COP29的旁观,印度尼西亚的能源和气候变化特使,Hashim Djojohadikusumo,提出了一项计划,将15年内的发电能力提高100 gigawatts(GW),他说,这些投资将需要2350亿美元的投资,其中75%来自这些补充件,而又有75%。Also in attendance, the President Director of PT Perusahaan Listrik Negara (PLN), Darmawan Prasodjo, further elaborated that the 75 GW renewables additions up to 2040 would come from hydropower (25 GW), solar (27 GW), wind (15 GW), geothermal (7 GW), and bioenergy (1 GW).在演示材料的脚注中,从煤(6 GW)和气体(22 GW)中记录了28 gW的额外热基质加载。
摘要本文重点介绍了自动驾驶车辆的控制问题之后的路径。旨在增强鲁棒性和衰减现象,基于Lyapunov理论开发了一种超级扭转的滑动模式控制算法(STA),其中通过应用倒退技术来提供控制系统稳定性的证明。此外,进行MATLAB/SIMULINK和CARSIM之间的共模拟以验证控制性能后的路径。在这项研究中,Stanley控制器,常规滑动模式控制(SMC)和模型预测控制(MPC)用作评估提出的STA性能的基准控制器。在模拟中考虑了两种驾驶场景,包括正常驾驶和猛烈驾驶。全面评估控制绩效和控制工作(即转向的大小),新颖地提供了一个集成和加权性能评估指数。仿真结果表明,在正常驾驶情况下,所提出的STA的𝐼𝑊𝑃𝐸𝐼可以减少40.5%,25.8%,10.9%;与斯坦利控制器,常规SMC和MPC相比,在激烈的驾驶情况下,在激烈的驾驶情况下有62.5%,24%,6.8%。结果还表明,所提出的STA在颤动的衰减方面优于常规SMC,从而导致前方向盘角度输入更平滑,并且更平滑。与MPC相比,所提出的STA的优点在于其计算复杂性较低。此外,通过更改车辆质量和轮胎参数来验证控制器的鲁棒性。与基准方法相比,所提出的STA可以将𝐼𝑊𝑃𝐸𝐼的波动减少22.6%,22.3%和5.9%。这些结果表明,对系统扰动的考虑对于超级扭转滑动模式控制器的设计至关重要,这可以改善系统后自动驾驶汽车路径的鲁棒性。
卷积神经网络(CNN)在培训数据集代表预期在测试时遇到的变化时,可以很好地解决监督学习问题。在医学图像细分中,当培训和测试图像之间的获取细节(例如扫描仪模型或协议)之间存在不匹配和测试图像之间的不匹配时,就会违反此前提。在这种情况下,CNNS的显着性能降解在文献中有很好的记录。为了解决此问题,我们将分割CNN设计为两个子网络的串联:一个相对较浅的图像差异CNN,然后是将归一化图像分离的深CNN。我们使用培训数据集训练这两个子网络,这些数据集由特定扫描仪和协议设置的带注释的图像组成。现在,在测试时,我们适应了每个测试图像的图像归一化子网络,并在预测的分割标签上具有隐式先验。我们采用了经过独立训练的Denoising自动编码器(DAE),以对合理的解剖分段标签进行模型。我们验证了三个解剖学的多中心磁共振成像数据集的拟议思想:大脑,心脏和前列腺。拟议的测试时间适应不断提供绩效的改进,证明了方法的前景和普遍性。对深CNN的体系结构不可知,第二个子网络可以使用任何分割网络使用,以提高成像扫描仪和协议的变化的鲁棒性。我们的代码可在以下网址提供:https://github.com/neerakara/test- time- aptaptable-neural-near-netural-netural-networks- for- domain-概括。
解码人脑一直是神经科学家和人工智能研究人员的标志。重新构建来自脑电脑脑电图(EEG)信号的视觉图像,由于其在脑部计算机接口中的应用,引起了人们的极大兴趣。本研究提出了一种两阶段的方法,其中第一步是获得脑电图衍生的特征,以稳健地学习深度代表,然后将学习的表示形式用于图像产生和分类。我们使用具有监督和对比度学习方法的深度学习体系结构在三个不同的数据集中进行了特征提取管道的普遍性。我们已经执行了零摄影的脑电图分类任务,以进一步支持概括性索赔。我们观察到,与脑电图和图像之间的联合代表学习相比,在单峰设置中仅使用脑电图数据来学习一个单独使用脑电图数据的近距离线性分离的视觉表示。最后,我们提出了一个新颖的框架,将看不见的图像转换为脑电图空间,并以近似值重建它们,从而展示了来自EEG信号的图像重建潜力。我们提出的来自EEG的图像合成方法显示了62。9%和36。EEGCVPR40和ThoughtViz数据集的成立得分提高了13%,这比GAN 1中的最先进的表现效果。EEGCVPR40和ThoughtViz数据集的成立得分提高了13%,这比GAN 1中的最先进的表现效果。
摘要。目前,制造可靠的无人机(无人机)是科学和技术的一项重要任务,因为此类设备在数字经济和现代生活中有很多用例,所以我们需要确保它们的可靠性。在本文中,我们建议用低成本组件组装四轴飞行器以获得硬件原型,并使用现有的开源软件解决方案开发具有高可靠性要求的飞行控制器软件解决方案,该解决方案将满足航空电子软件标准。我们将结果用作教学课程“操作系统组件”和“软件验证”的模型。在研究中,我们分析了四轴飞行器及其飞行控制器的结构,并提出了一种自组装解决方案。我们将 Ardupilot 描述为无人机的开源软件、适当的 APM 控制器和 PID 控制方法。当今航空电子飞行控制器可靠软件的标准是实时分区操作系统,该系统能够以预期的速度响应来自设备的事件,并在隔离分区之间共享处理器时间和内存。此类操作系统的一个很好的例子是开源 POK(分区操作内核)。在其存储库中,它包含一个四轴飞行器系统的示例设计,使用 AADL 语言对其硬件和软件进行建模。我们将这种技术与模型驱动工程应用于在真实硬件上运行的演示系统,该系统包含一个以 PID 控制作为分区过程的飞行管理过程。使用分区操作系统将飞行系统软件的可靠性提升到了一个新的水平。为了提高控制逻辑的正确性,我们建议使用形式验证方法。我们还提供了使用演绎方法在代码级别以及使用微分动态逻辑在信息物理系统级别验证属性的示例,以证明稳定性。
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
1 赞比亚国家公共卫生研究所 通讯作者:Stefanenonde@gmail.com 引用此文章 Chilengi R & Nonde, S. 大声说出来:非洲疫苗叙事必须改变,才能释放非洲大陆的潜力。健康新闻公报。2024;08(3):3-7。
夏尔默斯技术大学的生命科学系,SE412 96哥德堡,瑞典B天津工业生物技术研究所,中国科学学院,蒂安金300308,pr中国C中国生命科学学院,中国科学学院,北欧科学学院,北北方,北方,北部。深圳高级技术研究所,中国科学院,深圳518055,中国Pr中国e工程生物学主要实验室低碳工业研究所,工业生物技术学院,中国科学院,中国科学院DK2200哥本哈根,丹麦G Novo Novo Nordisk生物维护基金会,丹麦技术大学DK2800 Kongens Lyngby,丹麦
