有效储存150组成型数据(如时间、次数、压力、速度、行程、计量、模厚、模具名称、选用条件、原料温度等)。 在线操作详细提示。 采用分级加密锁定软件数据。 输入数据时有防错提示,以防修改不当。 数据修改可通过iChen系统在线保存在中央服务器。 最先进的SMT电板组装技术,可靠性高。 64位高速CPU。 10组PID温控,在30℃~500℃之间调节,精度高。 冷启动预防、、、、、自动预热功能、、、、、喷嘴堵塞报警、、、、、树脂溢流检测。。。。。。 运行中高低温偏差设定及温控器断线检测。注射10段速度、、、、、10段压力设定。。。。。 塑化10段速度、、、、、10段压力及10段背压设定。。。。。 4组吹气,6组抽芯。 锁模、注射、顶出均采用高精度光学编码器(标配)或电位器(选配)。 储存报警历史记录,方便工艺调试及维护。 生产数量及批次控制。 配合iChen订单排单系统。 自动切换润滑设定,缺油报警。 操作动作图形显示,方便注塑机运行的监督。 循环操作时间监视,方便调整以缩短循环时间。 注射速度、压力标准图与当前图对比。 注射终点统计。 在线监视程序运行情况及各种输入、输出、定时器、计数器的状态,方便调试和维护。支持104个输出、104个输入、200个定时器及20个计数器状态监控。模具数据可自由选取、复制及删除。可利用电脑内预设模具数据,保存设定时间。亦可外接SD卡输入数据。智能故障检测及辅助操作指示。支持热流道温度控制(60腔,选配)。全面支持iChen网络管理系统。
摘要 近二十年来,聚合物胶束 (PM) 一直是药物输送和靶向领域众多研究中最热门和最有前途的课题。聚合物胶束是由两亲性嵌段共聚物(即由疏水嵌段和亲水嵌段组成的聚合物)组成的自组装纳米级胶体颗粒。在本文中,我们概述了胶束和聚合物胶束的结构,然后总结了用于制备它们的方法。然后,我们重点介绍了几种基于分子间力的 PM,例如聚离子复合胶束 (PICM)、非共价连接胶束 (NCCM) 和最近开发的智能聚合物组装体,它们可以对温度、pH、氧化还原和光的变化等外部刺激作出反应,从而提供新型纳米材料。我们还重点介绍了用于制备 PM 的聚合物类型,以促进其在药物输送和靶向中的应用。这些聚合物胶束纳米载体主要用于药物输送,例如抗癌治疗、脑部治疗神经退行性疾病、抗真菌剂、用于药物和基因输送的刺激响应性纳米载体、眼部药物输送。靶向药物有望通过将其作用限制在癌组织来减少不良反应。最后,本综述广泛介绍了有助于活性成分输送和靶向的 PM 的基本方面以及其最新进展和应用。 关键词:胶束、聚合物胶束、嵌段共聚物、刺激敏感性 介绍人们对开发不仅高效而且还具有位点特异性的药物输送系统的关注和需求日益增加(Scholz 等人,1998 年)。胶体纳米载体包括纳米颗粒、胶束和脂质体,是满足位点特异性和靶向性的标准的药物输送系统之一。聚合物胶束 (PM) 是一种颗粒胶体载体系统,可在水性介质中自组装,由单链上同时具有亲水性“嵌段”和疏水性“嵌段”(AB 型)的线性两亲性大分子组成(每条共聚物链都是两亲性的)。这些聚合物胶束的粒径范围在 10-100 纳米之间,这使其比磷脂囊泡(脂质体)小得多(Trubetskoy,1999 年)。除了安全之外,这些药物输送系统还必须具有高负载能力、延长循环时间和
新药开发在此过程中很难耗时,涉及临床前测试,研究新药应用,临床试验和FDA批准的昂贵。脂质体和纽约人是纳米植物,已被广泛用作药物载体。这些囊泡系统中药物的包封具有多种优势,包括修饰亲脂性和亲水性,毒性降低,循环时间稳定性的增加以及药物吸收。通过使AA WICVCDTH羟基丙烷-β-螺旋可糖果蛋白DAACD络合AA构成AA的硫酸(AA)纳米含量及其衍生物的构成,并通过使用药物剂的Fischer反应来改进AA,以将二乙酯(DA)改进到二乙酯(DA)。AA AACD和DA与L-α-二硫硫酰磷脂酰胆碱/胆固醇和Tween 61/胆固醇的组成中掺入脂质体和噪声中。研究了与vincristine相比,使用MTT分析(HELA,KB和B 16 F 10)中的MTT分析,在纳米含量中使用MTT测定法。AACD与HELA,KB和B 16 F 10 AA中的AA相比,其效力最高,而比游离AA更有效,而不是Vincristine的脂质体。被捕获到双层囊泡时,DA和AACD比AA在杀死癌细胞方面更有效。AACD被夹杂在脂质体中,在HeLa细胞系中具有最高的抗增殖活性,其IC 50的效力比Vincristine和AA高。普通脂质体和新生组没有生长抑制作用。da证明了IC 50在Kb细胞系中的效力低了,而在Niosomes中的B 16 F 10 AACD中,IC 50的效力低于长文cristine。这项研究表明,通过衍生化和络合物以及双层囊泡的捕获可以增强其治疗功效。然而,与顺铂相比,使用SRB测定法在小鼠表皮细胞系(JB 6,正常细胞系)上掺入了小鼠表皮细胞系(JB 6,正常细胞系)上的纳米蛋白配方的细胞毒性。AA掺入的纳米孢子已证明在癌细胞系中具有抗增殖作用。此外,在纳米囊泡中掺入时,AA及其衍生物的安全性未显示对正常细胞系的毒性。
整合素 avb 6 是一种上皮特异性细胞表面受体,在许多恶性肿瘤中过度表达,包括致死率极高的胰腺导管腺癌。在此,我们开发并测试了一种新型 avb 6 靶向肽 DOTA-5G ( 1 ),用 68 Ga 放射性标记,用于 PET/CT 成像,用 177 Lu 放射性标记用于治疗。为了开发一种放射治疗诊断剂,我们对其进行了进一步修改,以增加循环时间、肾脏循环和肿瘤摄取,得到 DOTA-白蛋白结合部分-5G ( 2 )。方法:在固相上合成肽 1 和 2,并通过酶联免疫吸附测定评估它们对 avb 6 的亲和力。这些肽用 68 Ga 和 177 Lu 放射性标记。在 avb 6 阳性 BxPC-3 人胰腺癌细胞中评估了 68 Ga- 1 和 177 Lu- 2 的体外细胞结合、内化和效应。对患有皮下 BxPC-3 肿瘤的雌性 nu/nu 小鼠进行了 68 Ga- 1 和 68 Ga- 2 的 PET/CT 成像。对 68 Ga- 1(注射后 1 和 2 小时)、68 Ga- 2(注射后 2 和 4 小时)以及 177 Lu- 1 和 177 Lu- 2(注射后 1、24、48 和 72 小时)进行了生物分布。使用 OLINDA/EXM 1.1 将 177 Lu- 2 生物分布数据外推用于人体剂量数据估计。在患有 BxPC-3 肿瘤的小鼠中评估了 177 Lu- 2 的治疗效果。结果:酶联免疫吸附试验显示肽 1 和 2 对 avb 6 具有高亲和力(,55 nM)。合成了高放射化学纯度的 68 Ga- 1、68 Ga- 2、177 Lu- 1 和 177 Lu- 2。在 BxPC-3 细胞中观察到 68 Ga- 1 和 177 Lu- 2 的快速体外结合和内化。PET/CT 成像和生物分布研究表明 BxPC-3 肿瘤中有摄取。177 Lu- 2 中引入白蛋白结合部分导致肿瘤摄取和保留随时间增加 5 倍。根据扩展剂量数据,177 Lu- 2 的剂量限制器官是肾脏。与对照组相比,177 Lu- 2 治疗使中位生存期延长了 1.5 至 2 倍。结论:68 Ga- 1 和 177 Lu- 2 在体内和体外均表现出对整合素 avb 6 的高亲和力,可迅速内化到 BxPC-3 细胞中,并且在小鼠和人血清中稳定。两种放射性示踪剂在临床前研究中均表现出良好的药代动力学,主要通过肾脏排泄,且肿瘤与正常组织的比例良好。良好的人体剂量数据表明 177 Lu- 2 具有治疗胰腺导管腺癌的潜力。
许多小分子抗癌剂由于药代动力学差,常常无法有效检测或治疗癌症。使用纳米粒子作为载体可以改善这一状况,因为纳米粒子尺寸较大,可以减少清除率并提高在肿瘤内的滞留率,但也会减慢它们从循环系统转移到肿瘤间质的速度。在这里,我们展示了一种替代策略,即分子造影剂和工程纳米粒子在肿瘤内进行体内分子组装,使较小成分的快速流入和较大成分的高滞留率相结合。该策略可使荧光造影剂在肿瘤中快速蓄积,比荧光标记的大分子或纳米粒子对照快 16 倍和 8 倍。诊断灵敏度是被动靶向纳米粒子的 3.0 倍,并且这一改善在注射 3 小时后实现。体内组装方法的优势在于小分子药物可在肿瘤内快速积累、循环时间要求更短、可在保持肿瘤成像灵敏度的同时进行全身清除,并且肿瘤中的纳米粒子锚可用于改变造影剂、治疗剂和其他纳米粒子的药代动力学。这项研究展示了纳米粒子在肿瘤内的分子组装,为未来设计用于医疗的纳米材料提供了新的基础。确定癌症的正确预后和治疗方案需要对肿瘤进行准确的分期和监测。目前的检测策略通常将灵敏的成像方式与造影剂相结合(1、2)。然而,这些方法在许多情况下无法检测到病变,通常是因为成像对比度较差(2)。这可以通过将造影剂与聚合物或纳米粒子连接起来的肿瘤靶向策略来改善。纳米粒子非常适合用作肿瘤靶向载体,因为它们的体内行为由其设计决定,并且它们能够通过增强的渗透性和滞留效应泄漏到肿瘤中并在肿瘤中积聚(3 – 7)。尽管有这些优势,但仍有几个障碍限制了基于纳米粒子的靶向策略进行有效的肿瘤检测。被动靶向需要大直径的粒子,但这同时限制了向肿瘤的运输,并且只有在循环中经过数小时后才会发生积聚(8 – 10)。主动靶向纳米粒子设计可以实现更快的积聚(11 – 13),但可能不适合检测抗原未表征或异质性因此不可靠的病变。最后,纳米粒子在体内循环和持续时间较长,引发了对诊断或治疗药物毒性的潜在担忧。因此,开发一种靶向策略将造影剂快速聚集到肿瘤中,而无需依赖抗原表征,也不会在体内长期存在,这将是有利的。纳米粒子通过肿瘤细胞外基质的运动主要依赖于扩散 (8)。我们实验室最近的一项体内研究表明,扩散运输受到较大粒径的限制,粒径为 100 纳米时可忽略不计。发现直径为 80 纳米的纳米粒子缓慢渗透到间质中,并在注射 24 小时后定位在渗漏血管的几个细胞长度内
结核病是一种传染性细菌疾病,仍然是发病率和死亡率上升的全球健康问题。根据2022年全球结核病报告,结核病已超过艾滋病毒,是世界上最致命的传染病(世界卫生组织,2022年)。骨结核病占肺内结核病的35%。由于对现有的抗结核药物的反应不佳和局部骨组织中药物浓度较低,因此传统的药物疗法不会导致骨结核病的令人满意的治疗(Wang B.等,2021)。此外,抗结核药物的渗透不良,需要长期服用高药剂量才能维持局部骨组织中的浓度。因此,骨骨结核病的传统口服治疗至少涉及至少12个月的高剂量药物。(Li等,2016)。不幸的是,在开始药物治疗的一段时间后,大多数患者抱怨严重的副作用,其中一些患者退出了早期治疗,导致患者的依从性较低,甚至是耐多药耐药性结核病的紧急情况。在第一线抗结核药物中,rifampicin遭受了各种缺点,例如短期半寿命,差的生物利用度和高肝毒性,导致血液中利福平的利福平水平和增加的多重耐药性结核病的风险增加(toft an e an toft et aft al and。相比之下,利福丁是一种利福米霉素衍生物,半衰期和抗结核细胞比利福平(Zumla et al。,2015)大几倍。尽管在我们先前报道的作品中开发了含有利福丁的复合支架并植入骨缺陷,但不可能重复给药(Wang Z.等,2021)。因此,要开发一种可以减少药物剂量和频率的递送系统,同时改善局部骨组织的治疗作用似乎是长期药物治疗骨骨结核病的最有前途的选择。当前增强当前药物治疗活性的策略是将药物置于输送系统中。药物输送系统以提高药物分子的渗透性,溶解度和代谢稳定性。在各种系统中,纳米颗粒(NP)具有与自由药物相比的潜在优势,包括增加治疗效果和延长药物释放(Sukhithasri等,2014)。聚合NP由于其良好的生物相容性而被广泛用于临床治疗,并且可以通过正常的代谢途径消除其副产品(Luque-Michel等,2017)。在所有生物材料中,PLGA(Poly-D,L-甲状腺素-CO-糖苷)已获得食品和药物管理局(FDA)的批准,用于生物降解性质引起的生物医学应用(Mir等,2017; Kim等,2019),并且可能是针对靶向,想象,想象,进行靶向和治疗的有益材料。此外,PEG(聚乙二醇)可以进一步提供延长NPS循环的空间屏障(Xu等,2015)。在本研究中,为了使NP延长循环时间和靶骨组织的能力,四环素(TC) - 模化的药物输送系统
癌症仍然是全球死亡的主要原因之一,预计约40%的人口将在其一生中接受癌症诊断1。常规治疗,例如手术,化学疗法和放疗对于改善患者预后至关重要。但是,这些方法通常缺乏特异性,部分原因是患者之间和内部肿瘤的固有异质性。精确药物已经通过开发针对肿瘤的特定分子和遗传特征量身定制的疗法来应对这些挑战。有针对性的疗法,尤其是单克隆抗体,在该领域表现出了很大的希望,但是这些疗法面临诸如毒性,组织渗透不良和高生产成本等局限性。本论文的重点是创新前药策略的发展,包括基于Affibody的前药和具有affibody掩盖域的抗体前药,旨在增强组织选择性并降低癌症治疗中的全身毒性。此外,还探索了用于肿瘤相关蛋白酶的底物工程以优化前药激活。通过五篇研究论文,研究了这些策略,以提高下一代癌症治疗剂的潜力。在论文I中,使用肉桂葡萄球菌显示出了表皮生长因子受体(EGFR) - 靶向抗体的掩模域。这项研究筛选了一个Affibody库,以隔离能够有效掩盖EGFR结合活动的域。在论文II中,最初的基于Affibodo的前药进一步优化以改善其体内生物分布。概念验证前药证明,掩盖域可以抑制EGFR结合,并在蛋白水解裂解时恢复活性。关键修改包括引入合适的肿瘤蛋白酶底物和高亲和力的白蛋白结合结构域以延长血液循环时间。优化的前药在肿瘤异种移植小鼠中表现出良好的生物分布,在健康组织中的摄取幅度大大降低,显示体内肿瘤选择性的显着提高。在论文III中,探索了抗eGFR单克隆抗体西妥昔单抗的掩蔽域。使用大肠杆菌显示,选择了affibodies以特异性结合和掩盖cetuximab的寄生虫。西妥昔单抗前药是用affibody掩盖结构域设计的,体外研究表明,西替昔昔单抗的生长抑制作用降低了400倍,直到蛋白水解活化为止。这项研究验证了基于抗体的前药中阿喂掩模域的使用。纸IV旨在通过隔离能够掩盖Nivolumab(一种抗PD-1单克隆抗体)来证明大肠杆菌显示平台的多功能性。筛选鉴定出似乎模仿PD-1并阻止Nivolumab的结合能力的非惯性抗辩分子。结构建模和生物层干涉法证实了裂解时PD-1结合的有效掩盖和恢复,这表明可能会改善免疫检查点抑制,并减少全身性副作用。
1.2 总统大学管理学院管理与技术硕士学习课程 Jl。 Ki Hajar Dewantara,Jababeka 教育园区,Bekasi,17550,印度尼西亚 印度尼西亚 adi.saptari@president.ac.id,b ardhi.bebi.laksono@gmail.com 摘要。这项研究是在一家生产备件、专用机器、自动化系统集成商和机器人设备的机械工程公司进行的。公司存在仓库运营成本高、扩大生产线所需空间大、盘点问题、无法拣货、运营周期长、物流效率低、库存成本高等问题。这些问题对那些要求降低成本、提高效率和生产力并尽量减少缺陷的公司的业绩产生了影响。数据显示,该公司需要额外增加157平方米来扩建仓库,检索错误率为4%,运营成本超过2亿美元,周期时间为150秒,零件丢失率为7%,并且存在网络数据安全风险。鉴于问题的重要性,公司需要评估和解决影响公司业绩的问题,尤其是仓库部门的问题。采用 DMAIC(定义、测量、分析、改进和控制)方法全面探索问题并产生替代解决方案。提出了两种替代方案。使用的选择标准是成本;准确性、安全性、生产率、周期时间以及最小化缺陷。结论是,选择实施自动存储和检索系统 (ASRS) 是因为与扩建现有仓库相比,它在许多方面都占主导地位。 ASRS 的实施表明该新系统解决了当前的仓库问题。关键词。 ASRS、仓库自动化、dmaic、标准、选择。抽象的。这项研究是在一家生产定制备件、专用机械、自动化系统集成商和机器人设备的机械工程公司进行的。公司存在仓库运营成本高,产线需要扩容,库存问题,拣货困难,作业周期长,物流效率低,库存成本高等问题。这些问题对公司业绩有影响,公司需要降低成本、提高效率和生产力并尽量减少缺陷。数据显示,该公司需要额外增加157平方米来扩建新生产线,拣选缺陷率为4%,运营成本超过2亿美元,循环时间为150秒,零件丢失率为7%,存在网络数据安全风险。由于问题的重要性,公司需要评估并解决对公司绩效有影响的问题,尤其是在仓库方面。采用 DMAIC(定义、测量、分析、改进和控制)方法全面探索问题并提出替代解决方案。提出了两种替代方案。使用的选择标准是成本;准确性、安全性、安全性、生产率、周期时间,并尽量减少缺陷。结论是,选择自动存储和检索系统 (ASRS) 的应用,因为与扩展当前系统相比,它在许多方面占主导地位。ASRS 的实施证实,这个新系统可以解决当前的仓库问题。关键词:ASRS、仓库自动化、DMAIC、标准、选择。简介
纳米技术(纳米医学)有望帮助我们实现上述目标。各种纳米药物输送方法的发展在疾病的诊断、检测和治疗中发挥着至关重要的作用。这些纳米药物输送系统可以安全地将药物以可控的浓度转移到癌组织,避免与网状内皮系统相互影响。17 纳米载体由于尺寸与生物结构相似,对用于癌症治疗的纳米药物输送系统有重大影响;这些纳米载体可以轻松穿透细胞膜并延长循环时间。18 – 20 由于血管生成快速且有缺陷(从旧血管合成新血管),肿瘤血管的通透性增加,从而使纳米载体能够进入。此外,肿瘤内淋巴引流不畅会困住纳米载体,使它们将药物转移到癌细胞附近。这些药代动力学修改通过明确针对癌症部位并在活性持续时间内保持治疗剂在其特定缺陷部位的增加浓度来提供更好的结果。这种靶向化疗剂利用细胞凋亡和麻醉来杀死癌细胞。 21 – 23 新一代纳米载体是二维纳米材料,例如二硒化钨24 (WSe2)、硅烯25、锗烯26、二硫化钼27 (MoS2)、硒化铋28 (Bi2Se3)、二氧化锰29、过渡金属二硫属化物 (TMDs)、六方氮化硼30 (h-BN) 和玻璃纤维增强塑料 (GRP) 因其独特的物理化学性质而成为一些重要的纳米载体。 31 – 34 玻璃纤维增强塑料 (GRP) 形成了蜂窝状二维晶格结构,其中所有碳原子都是 sp2 杂化的,因而具有令人难以置信的机械和电气性能,由于具有良好的表面反应性和自由 p 电子,因此常用于光电装置、太阳能电池中的光电导材料、药物输送和医学成像。35 自由表面 p 电子可有效进行 p – p 相互作用、与难溶性药物的静电或疏水相互作用以及药物输送系统中的非共价相互作用。36 玻璃纤维增强塑料 (GRP) 与生物分子、组织和不同类型细胞的相互作用对其生物医学应用、毒性和生物相容性具有重要意义。37 玻璃纤维增强塑料 (GRP) 作为纳米载体,可以通过内吞作用快速进入细胞,并在刺激下成功地将药物释放到细胞溶胶中。 38 玻璃纤维增强聚合物中装载药物与载体的重量比为 200%,这使玻璃纤维增强聚合物成为一种比其他纳米载体更高效、更受欢迎的纳米载体。39 玻璃纤维增强聚合物对槲皮素、5-氟尿嘧啶和柔红霉素的载药能力已被研究用于癌症治疗。40 通过 DFT 计算 41,42 和分子动力学模拟研究了药物与玻璃纤维增强聚合物之间的相互作用。HPT (3 0 ,5,7-三羟基-4-甲氧基阿伐酮)及其代谢物是具有生物活性的阿伐酮类化合物,可用作抗氧化剂、抗糖尿病剂、抗癌剂、雌激素剂、抗炎剂和心脏神经保护剂。43 这种多羟基阿伐酮常见于蔬菜、柑橘幼果、西红柿、苹果和鲜花中。44 HPT 具有疏水性(水溶性差),在消化道中稳定性不足,导致口服吸收不良。45 许多研究小组正在努力通过纳米药物输送系统(如纳米制剂、