摘要:本文探讨了使用基于激光的添加剂工艺来制造,表面处理和修复/再制造工具,模具和模具,用于冷工作,热工作和注入成型。描述了这些应用程序中遇到的故障。经常使用的材料和激光添加剂过程被计入。用激光粉末融合(L-PBF)制造的工具,模具和模具的特性和在某些情况下要比在锻造材料中制造的功能更好。较短的循环时间,摩擦,较小的磨料磨损和更长的生命周期是L-PBF的某些好处,并用粉末(ded-p)(或用粉末,LMD-P或LASER CLADERCLADDING,LC)进行粉末(DED-P)(或激光金属沉积)。L-PBF导致更高的工具成本和更短的工具提前时间。基于对进行调查的综述,本文表明,可以为L-PBF设计和制造工具,模具和模具,通过DED-P(LMD-P,LC)功能使它们功能化,并通过DED-P(LMD-P,LC,LC)进行修复/再制造。L-PBF和DED-P(LMD-P,LC)的组合具有有效的操作性,作为整个工具生命周期的目标,由于当前的高L-PBF和DED-P(LMD-P,LC,LC)的成本,L-PBF和DED-P(LMD-P,LC)具有最大的潜力,并且具有较小的冷工作工具(由于当前的高L-PBF和DED-PBF(LMD-P,LC)成本)。
量子纠错 [1–4] 通过将多个物理量子位组合成一个逻辑量子位,为实现实用量子计算提供了一条途径,随着更多量子位的添加,逻辑错误率会呈指数级抑制。然而,只有当物理错误率低于临界阈值时,这种指数级抑制才会发生。在这里,我们在最新一代超导处理器 Willow 上展示了两个低于阈值的表面代码存储器:距离为 7 的代码和集成了实时解码器的距离为 5 的代码。当代码距离增加两倍时,我们更大的量子存储器的逻辑错误率被抑制了 Λ = 2.14 ± 0.02 倍,最终得到一个 101 量子位距离为 7 的代码,每个纠错周期的错误率为 0.143% ± 0.003%。这种逻辑存储器也超出了盈亏平衡点,是其最佳物理量子位的寿命的 2 倍。 4 ± 0 . 3. 我们的系统在实时解码时保持低于阈值的性能,在距离为 5 时实现平均 63 µ s 的解码器延迟,最多可进行一百万次循环,循环时间为 1.1 µ s。我们还运行距离为 29 的重复代码,发现逻辑性能受到每小时约一次或 3 × 10 9 次循环发生的罕见相关错误事件的限制。我们的结果表明,如果扩展,设备性能可以实现大规模容错量子算法的操作要求。
摘要 近年来,电子行业的发展引入了多堆叠球栅阵列 (BGA),以满足消费者对高性能和小尺寸芯片封装日益增长的需求。本研究重点是对使用材料坝法的封装堆叠 (PoP) 底部填充工艺进行了初步研究。底部填充工艺考虑使用高粘度类型的底部填充材料。在当前的实验工作中,由于 L 路径分配方法具有优势,因此选择了该方法,如前文所述。材料坝法用于防止底部填充材料向后移动并从分配区域流出。材料坝建在 PoP 封装周围。根据循环时间和横向搭接分析了底部填充工艺的有效性,这两个因素是材料选择的重要因素。实验结果表明,缓慢的底部填充流动可能导致材料在分配工艺仍在进行时快速硬化。这种情况限制了底部填充流动并在 PoP 封装中产生空隙。材料坝法成功增强了第 3 层和第 4 层堆叠封装的底部填充工艺。本研究旨在提供堆叠PoP封装的初步底部填充工艺,为微电子行业的工程师提供参考。关键词:堆叠PoP封装、底部填充工艺、L路径分配法、材料坝法、球栅阵列。
摘要:结核病仍然是一项巨大的全球健康挑战,需要发展创新的治疗策略来打击这种传染病。近年来,纳米技术已成为一个有前途的领域,具有彻底改变结核病治疗的潜力。本评论概述了纳米技术在诊断,药物输送和免疫疗法中的应用。纳米技术提供了新的途径,可通过在临床样品中快速和敏感的结核分枝杆菌的快速检测来改善结核病的诊断。纳米颗粒的生物传感器可以增强结核病诊断的敏感性和特异性。纳米级平台,例如量子点,碳纳米管和金纳米颗粒,可以检测MTB特异性生物标志物,从而促进早期和准确的诊断并及时的治疗开始。纳米制剂,其中包括脂质体,聚合物纳米颗粒和固体脂质纳米颗粒,可以将抗TB药物的靶向递送到感染部位。这些纳米载体可保护药物免受降解,提高其溶解度并延长循环时间,从而增强了药物生物利用度和改善的治疗结果。基于纳米技术的方法有可能通过彻底改变诊断,药物输送和免疫疗法来显着转化结核病治疗。利用纳米材料和纳米构造的独特特性实现精确和有针对性的干预措施,克服与常规方法相关的几个限制。随着该领域的研究的进展,预计纳米技术将继续在抵抗结核病的斗争中发挥关键作用,最终有助于全球控制和消除这种毁灭性疾病的努力。
摘要:阿霉素是一种细胞毒性蒽环类衍生物,在许多不同形式的人类癌症中被用作化学疗法,并有所成功。然而,阿霉素治疗具有多种副作用,其中最严重的是心肌病,可能是致命的。卵毛素脂质体(doxil®)中的阿霉素封装已显示可增加肿瘤定位并降低心脏毒性。相反,这种脂质体的稳定性也导致循环时间增加并在皮肤中积聚,从而导致掌骨播出器红细胞性刺耳性,同时也限制了该药物在肿瘤部位的释放。使用各种受体特异性肽和抗体的这种脂质体针对肿瘤细胞的特定靶向。 但是,靶向单个表位限制了可能的肿瘤靶标数量,并通过突变增加了肿瘤抗性的风险。 在本报告中,doxil®与源自金属蛋白酶组织抑制剂的肽序列P700偶联。使用各种受体特异性肽和抗体的这种脂质体针对肿瘤细胞的特定靶向。但是,靶向单个表位限制了可能的肿瘤靶标数量,并通过突变增加了肿瘤抗性的风险。在本报告中,doxil®与源自金属蛋白酶组织抑制剂的肽序列P700偶联。这种doxil®-P700复合物可通过小鼠和人类乳腺癌细胞和永生的血管细胞增加了大约100倍的药物吸收,导致细胞毒性增加。使用P700以这种方式靶向脂质体可能会使阿霉素或其他药物的特定输送到广泛的癌症。
脂质纳米粒子 (LNP) 已成功进入临床,用于递送基于 mRNA 和 siRNA 的治疗方法,最近又被用作 COVID-19 疫苗。然而,人们对其在体内的行为,特别是细胞靶向性缺乏了解。LNP 的向性部分基于内源性蛋白质对粒子表面的粘附。这种蛋白质形成所谓的冠,可以改变这些粒子的循环时间、生物分布和细胞摄取等。反过来,这种蛋白质冠的形成取决于纳米粒子的特性(例如大小、电荷、表面化学和疏水性)以及它所来源的生物环境。由于基因治疗有可能针对几乎任何疾病,因此人们正在考虑除静脉途径之外的其他给药部位,从而产生组织特异性蛋白质冠。对于神经系统疾病,颅内注射 LNPs 会产生脑脊液衍生的蛋白质冠,与静脉注射相比,这可能会改变脂质纳米颗粒的性质。在这里,我们在体外研究了临床相关的 LNP 制剂中血浆和脑脊液衍生的蛋白质冠之间的差异。蛋白质分析表明,在人脑脊液中孵育的 LNPs (C-LNPs) 产生的蛋白质冠组成与在血浆中孵育的 LNPs (P-LNPs) 不同。脂蛋白作为一个整体,特别是载脂蛋白 E,在 C-LNPs 上占总蛋白质冠的百分比高于 P-LNPs。这导致与 P-LNPs 相比,C-LNPs 的细胞摄取有所改善,无论细胞来源如何。重要的是,更高的 LNP 摄取量并不直接转化为更有效的货物输送,强调有必要进一步评估此类机制。这些发现表明,生物流体特异性蛋白质冠会改变 LNP 的功能,这表明给药部位可能会影响 LNP 在体内的功效,并且需要在配方开发过程中加以考虑。
目的:为改善异甘草素(ISL)水溶性差、生物利用度低的问题,设计一种以脑靶向多肽血管肽-2为修饰剂,以DSPE-PEG 2000为药物载体制备新型载药胶束,用于治疗急性缺血性中风。方法:采用薄膜蒸发法合成以血管肽-2为脑靶向配体修饰的ISL胶束(ISL-M)。利用透射电子显微镜观察胶束形貌,用纳米粒度分析仪测量粒径和zeta电位,用高效液相色谱检测胶束的载药量、包封率和体外释放率。采用UPLC-ESI-MS/MS法测定ISL静脉给药后在血浆和主要组织中的浓度,比较ISL和ISL-M的药代动力学和组织分布。在MCAO小鼠模型中,通过行为学和分子生物学实验证实了ISL和ISL-M的保护作用。结果:结果表明,ISL-M的载药量为7.63±2.62%,包封率为68.17±6.23%,粒径为40.87±4.82nm,zeta电位为−34.23±3.35mV。体外释放实验表明ISL-M具有良好的缓释效果和pH敏感性。与ISL单体相比,ISL-M能显著延长ISL在体内循环时间,增强在脑组织中的蓄积;ISL-M可通过抑制细胞自噬和神经元凋亡来减轻MCAO小鼠的脑损伤,且对主要组织器官无细胞结构损伤等不良影响。结论:ISL-M 有望成为 ISL 在急性缺血性卒中临床应用的理想候选药物。关键词:异甘草素、胶束、脑分布、药代动力学、缺血性卒中、MCAO
L-377,202 前药由阿霉素 (Dox) 与前列腺特异性抗原 (PSA) 肽底物结合而成,该肽底物可在肿瘤部位被酶活性 PSA 裂解。尽管在 I 期试验中最初很有希望,但由于某种程度的非特异性激活和毒性问题,L-377,202(本文称为 Dox-PSA)的进一步测试已停止。为了提高 Dox-PSA 的安全性,我们将其封装到低温敏感脂质体 (LTSL) 中以绕过全身激活,同时在轻度高温 (HT) 下控制释放时保持其生物活性。观察到暴露于轻度 HT 的 PSA 表达细胞的细胞核中活性前药的时间依赖性积累,表明 Dox-PSA 有效地从 LTSL 中释放出来,被 PSA 裂解并以游离 Dox 的形式进入细胞核。此外,我们已经证明,在 37°C 下,负载 Dox-PSA 的 LTSL 可以阻断其生物活性,而与游离 Dox-PSA 相比,与轻度 HT 结合会导致 2D 和 3D PC 模型中的细胞毒性增强。更重要的是,与游离 Dox-PSA 相比,封装在 LTSL 中的 Dox-PSA 延长了其血液循环时间,并减少了 C4-2B 肿瘤小鼠心脏中的 Dox 积累,从而显著改善了 Dox-PSA 的治疗窗口。最后,在实体和转移性 PC 肿瘤模型中,负载 Dox-PSA 的 LTSL 与 HT 相结合显著延缓了肿瘤生长,其速度与用游离 Dox-PSA 治疗的小鼠相似。这表明该策略可以阻断 Dox-PSA 的系统性裂解而不会降低其在体内的功效,这可能是治疗局部晚期 PC 患者的更安全的选择。
背景:系统评价非糖尿病患者心脏术后应激性高血糖的危险因素。方法:计算机检索CNKI、万方数据、VIP、SinoMed、PubMed、Web of Science、Embase、Cochrane Library等数据库,采用RevMan 5.4和Stata 15.0软件对数据进行深入的meta分析。结果:本研究共纳入11645例心脏术后患者,包括8项病例对照研究和3项队列研究,共识别出18个危险因素。 Meta 分析结果显示,具有统计学意义的危险因素包括年龄 > 65 岁[OR (95%) (95% CI ) = 3.47 (2.61–4.32)]、女性[OR (95%) = 1.54 (1.34–1.76)]、心脏瓣膜和冠状动脉搭桥手术联合手术[OR (95%) = 1.82 (1.23–2.70)]、射血分数 < 40% [OR (95%) = 1.38 (1.17–1.63)]、心脏手术史[OR (95%) = 1.30 (1.06–1.59)]、心肌梗死[OR (95%) = 1.17 (1.05–1.31)]、高脂血症[OR (95%) = 0.76 (0.67–0.86)]、高血压[OR (OR(95%)= 1.12(1.03–1.22)]、抗凝药物[OR(95%)= 0.77(0.65–0.90)]、体外循环时间> 2 小时[OR(95%)= 20.26(17.03–23.48)]和体外循环史[OR(95%)= 1.24(1.09–1.41)]。结论:目前的证据表明,在接受心脏手术的非糖尿病患者中,术后应激性高血糖存在关键危险因素。这些因素有助于识别心脏手术期间发生围手术期应激性高血糖高风险的患者。该证据为医护人员制定非糖尿病患者围手术期应激性高血糖的预测管理策略提供了依据。然而,需要更多高质量的研究来解决当前研究的局限性。 PROSPERO 注册:CRD42024479215,https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=479215。
摘要。简介:传统草药已有数百年的历史,在世界各地的医疗保健系统中继续发挥着重要作用。然而,由于生物利用度差、不稳定和非特异性靶向等各种因素,草药的功效和治疗潜力可能受到限制。近年来,纳米技术已成为克服这些限制并彻底改变草药领域的一种有前途的方法。本综述探讨了纳米药物输送系统在提高草药治疗效果方面的应用。纳米技术在草药中的应用涉及纳米载体的设计和开发,这些载体可以以受控和有针对性的方式封装草药生物活性化合物并将其输送到目标部位。各种类型的纳米载体,如脂质体、聚合物纳米颗粒、固体脂质纳米颗粒和纳米乳液,因其在提高草药化合物的生物利用度、稳定性和控制释放方面的潜力而得到了广泛的研究。纳米技术与草药的结合具有多种优势,包括增强溶解度、防止降解、延长循环时间以及针对患病组织或细胞的特定靶向性。此外,纳米药物输送系统还可以促进多种草药成分的组合,从而产生协同效应和定制治疗方法。本综述概述了草药纳米药物输送系统的最新进展,重点介绍了它们在癌症治疗、神经退行性疾病、心血管疾病和炎症等各种治疗领域的潜在应用。此外,还讨论了这些纳米技术方法的临床转化面临的挑战和未来前景。总之,纳米技术与草药的结合有望彻底改变医疗保健领域。开发高效且有针对性的纳米药物输送系统可以显着提高草药的治疗效果,从而改善患者的治疗效果并实现个性化医疗。需要科学家、草药医生和临床医生之间的进一步研究和合作,以充分发挥纳米药物输送系统在草药中的潜力。