摘要 — 为了实现长期自主导航中稳健、无漂移的位姿估计,我们在本文中提出了一种将全局位置信息与视觉和惯性测量融合在一起的紧耦合非线性优化估计器。与以前的松散耦合的工作不同,使用紧耦合方法可以利用所有测量之间的相关性。通过最小化包括视觉重新投影误差、相对惯性误差和全局位置残差的成本函数来估计最新系统状态的滑动窗口。我们使用 IMU 预积分来计算惯性残差,并利用该算法的结果有效地计算全局位置残差。实验结果表明,所提出的方法实现了准确且全局一致的估计,而优化计算成本的增加可以忽略不计。我们的方法始终优于松耦合的融合方法。与室外无人机 (UAV) 飞行中的松散耦合方法相比,平均位置误差减少了 50%,其中全局位置信息由嘈杂的 GPS 测量提供。据我们所知,这是首次在基于优化的视觉惯性里程计算法中紧密融合全局位置测量,利用 IMU 预积分方法定义全局位置因子。
图2。使用0.03-30-0.015-30 s在50和75°C下的0.03-30-0.015-30 s在各种温度下对ALD ZRO 2进行测量,在50和75°C下,0.03-10-0.015-10 s在100 - 275°C的范围内,范围为100 - 275°C: 2胶与温度。
电力系统中的惯性是指大型旋转发电机和一些工业电动机中储存的能量,这使它们具有保持旋转的趋势。当大型发电厂发生故障时,这种储存的能量尤其有价值,因为它可以暂时弥补故障发电机造成的电力损失。这种暂时的响应(通常持续几秒钟)使控制大多数发电厂的机械系统有时间检测和应对故障。
首字母缩略词和缩写列表 AC 交流电 DC 直流电 DOE 美国能源部 EI 东部互联 ERCOT 德克萨斯州电力可靠性委员会 FERC 联邦能源管理委员会 FFR 快速频率响应 GW 千兆瓦 GWh 千兆瓦时 GW•s 千兆瓦秒 IBR 基于逆变器的资源 kW 千瓦 kWh 千瓦时 LR 负载响应 MISO 中大陆独立系统运营商 mph 英里每小时 MW 兆瓦 MWh 兆瓦时 MW•s 兆瓦秒 NERC 北美电力可靠性公司 NREL 国家可再生能源实验室 PFR 主频率响应 RPS 每秒旋转数 PV 光伏 RoCoF 频率变化率 RRS 响应备用服务 UFLS 低频负载削减 VG 可变发电 WI 西部互联
流动海洋表面的湍流与陆地上的湍流具有不同的特性。因此,基于陆地上的湍流动能 (TKE) 预算和莫宁-奥布霍夫相似理论 (MOST) 的发现可能不适用于海洋条件,部分原因是存在波边界层(大气边界层的下部,包括表面波的影响;我们在本文中使用术语“WBL”以方便使用),其中总应力可分为湍流应力和波相干应力。这里湍流应力定义为由风切变和浮力产生的应力,而波相干应力则考虑了海浪和大气之间的动量传递。在本研究中,研究了湍流动能 (TKE) 预算和惯性耗散法 (IDM) 在 WBL 内 MOST 背景下的适用性。我们发现,在计算波浪条件下的总应力时,不应忽略 TKE 预算中的湍流传输项。这已通过在固定平台上进行的观测得到证实。结果还表明,在 WBL 内应用 MOST 时应使用湍流应力,而不是总应力。通过结合 TKE 预算和 MOST,我们的研究表明,传统 IDM 计算的应力对应于湍流应力,而不是总应力。在应用 IDM 计算 WBL 中的应力时,应考虑波浪相干应力。
自本世纪初以来,就使用了“临床惯性”一词。Allen等。 (9)提出临床惯性包括三个因素:医师因素,患者因素和办公室系统因素。 临床惯性表示,尽管有大量证据表明这些疗法的好处,但仍未使用有效的疗法来防止严重的临床终点。 在2015年,REACH(10)提供了包括以下临床惯性的描述:“有一个隐式或专家指南,医生意识到该准则,医生认为该指南适用于患者,医师有资源可以应用准则,但所有这些状况都符合所有这些状况,但请遵守该指南,但Dive dive n dive n dive neve neve in Condece 但是,已经注意到,在某些情况下,临床惯性可能代表临床保障措施,如果准则不适用于特定患者(4,11),则可以认为是合适的(4,11)。 这被称为“亲本临床惯性”(4)。 由于缺乏适当的护理知识,也可能发生临床医生无所作为,这也可以被视为临床惯性。 此外,临床惯性不应被称为“临床医生惯性”Allen等。(9)提出临床惯性包括三个因素:医师因素,患者因素和办公室系统因素。临床惯性表示,尽管有大量证据表明这些疗法的好处,但仍未使用有效的疗法来防止严重的临床终点。在2015年,REACH(10)提供了包括以下临床惯性的描述:“有一个隐式或专家指南,医生意识到该准则,医生认为该指南适用于患者,医师有资源可以应用准则,但所有这些状况都符合所有这些状况,但请遵守该指南,但Dive dive n dive n dive neve neve in Condece 但是,已经注意到,在某些情况下,临床惯性可能代表临床保障措施,如果准则不适用于特定患者(4,11),则可以认为是合适的(4,11)。 这被称为“亲本临床惯性”(4)。 由于缺乏适当的护理知识,也可能发生临床医生无所作为,这也可以被视为临床惯性。 此外,临床惯性不应被称为“临床医生惯性”但是,已经注意到,在某些情况下,临床惯性可能代表临床保障措施,如果准则不适用于特定患者(4,11),则可以认为是合适的(4,11)。这被称为“亲本临床惯性”(4)。由于缺乏适当的护理知识,也可能发生临床医生无所作为,这也可以被视为临床惯性。此外,临床惯性不应被称为“临床医生惯性”
以固定翼飞机为例,开发了一种基于矢量场输入的状态相关 LQR 控制器,以及从误差状态和李群理论得出的 EKF,以估计飞机状态和惯性风速。通过蒙特卡罗模拟证明了这种控制器/估计器组合的稳健性。接下来,通过使用阻力系数、部分更新和关键帧重置增强滤波器,提高了多旋翼飞行器最先进的 EKF 的准确性、稳健性和一致性。蒙特卡罗模拟证明了增强滤波器的准确性和一致性得到了提高。最后,推导出使用图像坐标的视觉惯性 EKF,以及用于估计精确视觉惯性估计算法所需变换的离线校准工具。通过数值模拟还表明基于图像的 EKF 和校准器在各种条件下都具有稳健性。
跟踪步行者位置的导航系统可用于寻找和营救消防员或其他紧急救援人员,或用于位置感知计算、个人导航辅助、移动 3D 音频以及混合或增强现实应用。在现实世界中部署位置敏感型可穿戴计算(包括混合现实 (MR))的主要障碍之一是,当前的位置跟踪技术需要仪器化、标记或预先映射的环境。对于许多移动应用来说,提前安装标记或仪器是不切实际的,人们正在寻找一种无需准备即可在任何室内或室外环境中可靠工作的跟踪方法。计算机视觉是领先的竞争者,但开发用于通用的强大视觉跟踪器仍然存在巨大挑战。仅用于方向跟踪的实用解决方案是使用惯性传感器,例如微机电系统 (MEMS) 陀螺仪,通过参考地球重力进行俯仰和滚动,参考地磁场进行航向校正。1 独立式传感器可在任意未准备的室内和室外环境中工作。不幸的是,对于位置跟踪或定位,没有同样通用的解决方案,而 MR 系统需要这些解决方案才能进行注册。到目前为止,室外位置跟踪不得不依赖 GPS 或其他无线电导航辅助设备。开发人员已经提出了各种声学
厘米级、稳健的 GNSS 辅助惯性后处理,用于无本地参考站的移动测绘 J. J. Hutton a、N. Gopaul a、X. Zhang a、J. Wang a、V. Menon a、D. Rieck b、A. Kipka b、F. Pastor b a Trimble Navigation Limited,85 Leek Cr.,Richmond Hill,Ontario,Canada L4B 3B3 – (jhutton、ngopaul、xzhang、jhwang、vmenon)@applanix.com b Trimble Navigation Limited,Haringstrasse 19,Hohenkirchen-Siegertsbrunn Munich,85635,德国 – (Daniel_Rieck、Adrian_Kipka、Fabian_Pastor)@trimble.com ICWG III/I 关键词:差分GNSS、传感器方向、移动测绘、GNSS 辅助惯性、地理配准、机载测绘、直接地理配准、PPP 摘要:近二十年来,移动测绘系统一直使用全球导航卫星系统 (GNSS) 进行地理配准,以测量位置并使用惯性传感器测量方向。为了实现厘米级的位置精度,使用了一种称为后处理载波相位差分 GNSS (DGNSS) 的技术。为了使此技术有效,到单个参考站的最大距离不应超过 20 公里,而当使用参考站网络时,到最近站的距离不应超过约 70 公里。这种设置本地参考站的需求限制了生产力并增加了成本,尤其是在测绘大面积或长线性特征(例如道路或管道)时。用于从 GNSS 进行高精度定位的 DGNSS 替代技术是