机器人及时通过传感器数据构建持久,准确且可操作的模型的能力是自主操作的范围。在将世界表示为点云可能足以进行本地化时,避免障碍物需要更密集的场景表示形式。另一方面,更高级别的语义信息通常对于分解必要的步骤来完成一项复杂的任务,例如烹饪,自主是至关重要的。因此,迫在眉睫的问题是,手头机器人任务的合适场景表示是什么?这项调查提供了对关键方法和框架的全面回顾,这在机器人空间感知领域推动了进步,并特别关注了代表的历史演变和当前的趋势。通过将场景建模技术分类为三种主要类型(公式,公式和指标 - 语言流行),我们讨论了空间启示框架正在从构建世界的纯几何模型转变为更高级的数据结构的方式,这些模型包括更高级别的概念,例如对象实例和位置的概念。特别重点是实时同时定位和映射(SLAM)的方法,它们与深度学习的集成,以增强了鲁棒性和场景的理解,以及它们处理场景动态性的能力,作为当今驾驶Robotics研究的一些最热门的主题。我们在讨论方面的挑战和未来的研究方向的讨论中进行了结论,以建立适合长期自治的强大而可扩展的空间感知系统。
摘要:从表面上看,行为科学和物理学似乎是两个不同的研究领域。然而,对他们解决的问题进行了更仔细的研究表明,它们彼此唯一相关。以量子思维,认知和决策理论为例,这种独特的关系是本章的主题。调查当前的学术期刊论文和学术专着,我们提出了量子力学在人类感知,行为和决策现代研究中的作用的另一种愿景。为此,我们主要旨在回答“如何”问题,故意避免复杂的数学概念,但要开发一种技术简单的计算代码,读者可以修改以设计自己的量子启发的模型。我们还介绍了计算代码的应用并概述几个合理的方案的几个实践示例,其中量子模型基于提议的DO-Yourandself Model套件可以帮助了解个人和社会群体的行为之间的差异。
可变形图像配准是医学图像分析的基本步骤。最近,Transformer 已用于配准,其表现优于卷积神经网络 (CNN)。Transformer 可以捕获图像特征之间的长距离依赖性,这已被证明对配准有益。然而,由于自注意力的计算/内存负载高,Transformer 通常用于下采样特征分辨率,无法捕获全图像分辨率下的细粒度长距离依赖性。这限制了可变形配准,因为它需要每个图像像素之间精确的密集对应关系。没有自注意力的多层感知器 (MLP) 在计算/内存使用方面效率高,从而可以捕获全分辨率下的细粒度长距离依赖性。然而,MLP 尚未在图像配准中得到广泛探索,并且缺乏对医学配准任务至关重要的归纳偏差的考虑。在本研究中,我们提出了第一个基于相关感知 MLP 的配准网络 (CorrMLP) 用于可变形医学图像配准。我们的 CorrMLP 在新颖的粗到细配准架构中引入了关联感知多窗口 MLP 块,该架构可捕获细粒度多范围依赖性以执行关联感知粗到细配准。对七个公共医疗数据集进行的大量实验表明,我们的 CorrMLP 优于最先进的可变形配准方法。
抽象目的:它的目的是探索自我效能感和财务焦虑水平在健康和旅游学生的生活满意度对大脑流失看法的影响中的串行调解作用。方法:在这项描述性研究中,在Antalya,Türkiye和串行中介模型和回归分析中,使用四个量表,生命满意度,自我效能,经济焦虑量(自我满意度,自我效率,财务焦虑)收集了403名参与者的数据。结果:根据数据,83.3%的旅游业,74.8%的护理,56.5%的牙科和55.7%的医学院学生表示他们正在考虑毕业后正在迁移。生活满意度对自我效能感和对财务焦虑的负面影响产生了积极影响,对财务焦虑的自我效能感具有积极影响。生命满意度对大脑流失有直接的负面影响,而自我效能感和财务焦虑对大脑排水产生了积极影响。学生对生活满意度的看法是大脑流失意图的重要先决条件,自我效能感和财务焦虑对这种影响具有中介作用。最影响其迁移意图的因素是脑力流失态度和教职员工。财务焦虑,自我效能感和出国意图是影响大脑流失看法的变量。结论:本研究中表达的移民意图和大脑消耗态度预测,对该国的医疗保健和旅游服务的可持续性构成了直接和严重的威胁。需要采取干预措施,例如改善财务焦虑和提供生活满意度。关键词:脑力消耗,财务焦虑,生活满意度,移民,自我效能,串行模型分析,学生
当前的感知模型在很大程度上取决于资源密集型数据集,从而促使需要创新。通过从各种注释中构造图像输入来利用综合数据的最新进展,证明对下游任务有益。虽然先前的方法已单独解决了生成和感知模型,但首次降低了两者的谐调,从而解决了为感知模型生成有效数据的挑战。通过感知模型增强图像发生,我们引入了感知感知损失(P.A.损失)通过细分,提高质量和可控性。为了提高特定感知模型的性能,我们的方法通过提取和利用感知意识来定制数据(P.A.attr)在一代中。对象检测任务的实验结果突出显示了detDiffusion的统治性能,建立了布局引导的新最新作品。此外,降低的图像合成可以有效地增强训练数据,从而显着增强下游检测性能。
感知在各种机器人应用中起着至关重要的作用。但是,现有的良好的数据集偏向自动驾驶场景,而未标记的SLAM数据集则很快过于拟合,并且通常缺乏环境和域变化。为了扩大这些领域的边界,我们介绍了一个名为MCD(Multi-campus数据集)的全面数据集,其中包含各种感应方式,高准确的地面真相以及在三个欧亚大学的欧亚大学校园内的挑战性环境。MCD包括CCS(经典的圆柱旋转)和NRE(非重复性环球)LIDAR,高质量的IMU(惯性测量单元),相机和UWB(URWB(Ultra-Wideband))传感器。更重要的是,在开创性的努力中,我们引入了29堂课的语义注释,超过59k稀疏的nre lidar扫描
上个月,Kudan 参加了在圣何塞举行的 NVIDIA GPU 技术大会 (GTC) 和 Jetson 合作伙伴日。这是一个绝佳的机会,可以亲自了解生成式人工智能和更广泛的机器人领域的最新发展,加深我们对 NVIDIA 对市场趋势的看法,并推进与 NVIDIA 机器人团队和其他潜在合作者的合作。目前,NVIDIA 的大部分增长都集中在数据中心,反映了生成式 AI 的现状,其中计算密集型模型占主导地位。大规模语言模型 (LLM) 通常具有数十亿个参数,而 GPT-4 等最新进展估计将达到万亿个参数大关。 然而,谈到机器人加速计算和边缘计算,我们仍处于早期阶段。小型语言模型 (SLM) 和微型视觉语言模型 (VLM) 可以在 NVIDIA Jetson 设备(包括 Orin Nano)上运行。然而,边缘计算机预计要处理多项任务,而且机器人和边缘设备执行的任务的关键性要求对错误的容忍度要低得多。聊天机器人可以犯一些错误,但仍然可以为用户提供价值,但是当机器人犯错时,代价可能是灾难性的。 NVIDIA 对边缘计算和机器人技术的未来的乐观前景正在指导我们在这些领域的战略投资。尽管目前还处于早期阶段且面临诸多挑战,但边缘人工智能的市场机会无疑是巨大的。尽管这一市场扩张的时机仍不确定,但它所代表的机遇规模却是显而易见的。
摘要该研究确定了玉米农民对尼日利亚阿比亚州转基因作物的认识和感知。使用多阶段抽样程序选择了一百八十四名受访者进行调查。用结构化的查询范围收集数据,并以百分比,均值和回归分析进行分析。多数(67.4%)的农民不知道转基因的玉米作物,而农作物不在供应中(x̄= 1.5)。玉米农民对转基因作物的看法不是很喜欢(x̄= 2.4)。很难在市场上出售它们(x̄= 3.4),气候变化对预期产量的负面影响的威胁(x̄= 3.2)以及这些农作物可能需要大量投入的可能性,例如肥料和肉质(x̄= 2.8)。年龄(β= 1.023),以前具有改善的作物品种(β= 2.112)和Internet访问(β= 2.317)的经验对农民的看法有积极影响,但是高等学校学位的家庭成员人数(β= -0.721)具有负面影响。应该创建对转基因玉米作物的更多认识,以使农民能够根据对农作物的看法做出反对的决定。扩展服务应得到充分资金来实现这一目标。
尽管最近的研究通过深度学习技术突破了极限,但从 3D 点云中进行物体检测仍然是一项具有挑战性的任务。由于严重的空间遮挡和点密度随到传感器距离的固有变化,同一物体在点云数据中的外观会有很大变化。因此,设计针对这种外观变化的鲁棒特征表示是 3D 物体检测方法的关键问题。在本文中,我们创新地提出了一种类似域自适应的方法来增强特征表示的鲁棒性。更具体地说,我们弥合了特征来自真实场景的感知域和特征从由富含详细信息的非遮挡点云组成的增强场景中提取的概念域之间的差距。这种领域自适应方法模仿了人脑在进行物体感知时的功能。大量实验表明,我们简单而有效的方法从根本上提高了 3D 点云物体检测的性能并取得了最先进的结果。
