该项目的数据将有助于美国海军完成其使命,同时通过改进环境标准中使用的听觉加权函数来保护处于危险中的海洋哺乳动物。由于当前的听觉加权函数源自长持续时间的纯音,可能无法推广到其他类型的声音,因此开发持续时间相关和带宽相关的听觉加权函数将支持对广泛信号的感知响度估计。定义虎鲸的感知响度和信号持续时间之间的关系还将为其他大型齿鲸(如喙鲸和抹香鲸)提供数据,因为虎鲸目前是该群体的最佳听觉替代品。
为了确保组织和个人获得适当程度的成功,一个非常重要的因素的一个很好的例子,这个因素变得越来越重要,就是能够拒绝没有或几乎没有恐惧感的申请人。在早期,这种人被认为是飞行员训练的最佳候选人。现在我们知道,一个无所畏惧的飞行员在对自己和每个人构成威胁时,
抑郁症是全球第三大致残原因,已成为影响所有年龄段人群的重大公共卫生问题,对身心健康产生深远的负面影响。在美国,经历重度抑郁发作的一生中风险接近 30% (1,2)。在此背景下,抑郁家庭环境中的经历在塑造后代对抑郁和焦虑症的脆弱性和适应力方面起着至关重要的作用 (3)。因此,研究越来越多地关注家庭动态和抑郁症之间的复杂相互作用,特别强调照顾者的情绪健康对儿童心理发展的影响。照顾者的焦虑和压力被认为是可能引发或加剧抑郁症状的关键因素 (4),此外,父母的抑郁和焦虑有可能跨代传递 (5)。例如,Carly J. Johnco 和同事发现了焦虑和抑郁代际传递的证据,并指出父母的排斥和缺乏温暖会显著增加儿童患抑郁症的风险(6)。照顾者的焦虑和压力等心理健康问题会对家庭环境产生不利影响,从而可能增加后代患抑郁症的风险。有多种机制可以阐明照顾者的压力如何影响儿童:1.家庭环境对神经发育的影响:Nicole R. Bush 和同事发现,家庭社会经济地位、家庭结构和环境、养育行为和互动方式、父母的心理健康和功能以及父母的物质使用等因素都会影响儿童的大脑发育,进而影响他们患精神疾病的风险(7);2.情绪感染:儿童可能会内化照顾者的情绪状态,导致抑郁症状的出现。行为模仿:儿童可能会采用照料者模仿的适应不良的应对策略。例如,Emily L. Robertson 及其同事观察到,自 COVID-19 疫情爆发以来,照料者的焦虑、愤怒、悲伤/抑郁情绪增加,饮食和睡眠模式发生变化,对未来的希望减少,冲突加剧,这些因素可以预测一个月后其子女脾气问题、冲突和注意力缺陷多动障碍 (ADHD) 症状的严重程度 ( 8 )。3. 育儿实践受损:照料者的焦虑会破坏育儿行为,导致过度保护、管教不一致或忽视,进而导致儿童情绪失调和抑郁症状。由于照料者情感缺失导致亲子关系恶化,进一步增加了儿童患抑郁症的可能性 ( 9 )。4.社会经济和环境压力源:照料者的压力往往伴随着社会和经济压力,这些压力会通过限制儿童获得资源和机会而加剧上述影响(10、11)。尽管有大量的研究,但大多数研究都是在西方背景下进行的,主要关注父母情绪对儿童情绪健康的影响。关于照料者压力和焦虑影响的研究明显不足
苏格兰大学苏黎世大学和苏黎世大学,瑞士神经信息学研究所B卫生技术部,丹麦·托克尼斯克大学DTU,丹麦C丹麦林格比,丹麦C丹麦C型磁力共鸣研究中心,哥本哈根大学医院HVIDOVRE,HIVIDOVRE,DENMARK DENMARK DENMARK DENMARK DENMARS DENMARK DENMARK DENMARK DENMARK DENMARK DENMARK DENMARKERIERIRE; 8248,法国巴黎,德国认知,典范,纽约州纽约州哥伦比亚大学哥伦比亚大学哥伦比亚大学电气工程系PSL研究大学,美国哥伦比亚大学,美国哥伦比亚大学哥伦比亚省哥伦比亚省哥伦比亚省哥伦比亚省大脑行为研究所,纽约州哥伦比亚大学,美国纽约州哥伦比亚大学,美国纽约市,美国纽约市,纽约州,美国纽约市,纽约州,纽约州,美国纽约市,纽约州,纽约州。纽约州纽约州曼海斯特市Feinstein医学研究所
抽象课程推荐系统可以通过利用用户交互数据来帮助学生识别合适或有吸引力的课程,这显示了用户和课程之间以前的参与。但是,现有课程推荐系统的普遍问题是它们倾向于优先考虑准确性而不是解释性。这些复杂模型的“黑框”性质提出了一个挑战:准确表征和建模用户的偏好,同时还提供明确的,具有预性和可解释的用户配置文件。为了解决这种限制,我们为课程推荐提出了一个新颖的知识实体感知模型,该模型称为KEAM,该模型基于知识图的详细信息支持明确的用户个人资料生成,以增强学生对建议背后的理由的理解。具体来说,我们利用知识图中编码的信息,通过更换隐藏单元来使用神经网络之间建立单位之间的连接。接下来,对模型进行了培训,可以捕获学生的偏好并创建用户配置文件,以提供可解释的建议。在两个现实世界的在线数据集上进行了全面的实验,以评估所提出的模型的有效性和解释。
,QWURGXFWLRQ口语技术的域范围从语音输入和输出系统到复杂的理解和生成系统,包括具有广泛差异的复杂性(例如自动命令机)和多语言系统(例如自动对话和翻译系统)的多模态系统。对此类系统的标准和评估方法的定义涉及高度特定的口语语料库和词典资源的规范和开发,以及测量和评估工具。在开始时,这些领域的标准是从以前在许多欧洲和国家项目中建立的口语社区中的共识得出的,它参考了美国和日本的重要举措。主要是SAM项目(集中在组件技术评估和语料库创建上),SQALE(用于大型词汇系统评估)以及日d和Sundial和Sunstar(用于多模式系统)过去和现在的项目在评估和资源领域具有重要的产量,包括ARS,Relator,Onomastica和SpeechDat,以及德国的Verbmobil等主要国家项目和研究计划。
摘要:家禽业在全球农业中起关键作用,家禽是蛋白质的主要来源,并为经济增长做出了重大贡献。但是,该行业面临着与重复性且苛刻的劳动密集型任务相关的挑战。自动化已成为提高运营效率并提高工作条件的关键解决方案。具体来说,机器人的操纵和对象的处理在工厂中变得无处不在。但是,存在挑战以预先识别和引导机器人处理一堆具有相似纹理和颜色的物体。本文着重于开发旨在自动化鸡的机器人解决方案的视觉系统,该机器人解决过程是一种基本的,但在家禽加工中是一种基本但身体上剧烈的活动。为了解决通用实例分割模型在识别重叠对象中的限制,开发了一种具有成本效益的双重活性激光扫描系统来生成对象上的精确深度数据。将经过良好的深度数据生成与RGB图像集成在一起,并将其发送到实例分割模型以进行单个鸡检测和识别。这种增强的方法显着改善了该模型在处理涉及重叠鸡的复杂场景中的性能。具体而言,RGB-D数据的集成将模型的平均平均精度(MAP)检测准确性提高了4.9%,并显着改善了中心偏移 - 本研究中引入的定制度量标准,以量化地面真相蒙版中心与预测的面具中心之间的距离。精确的中心检测对于开发未来的机器人控制解决方案至关重要,因为它可以确保在鸡肉重定过程中准确抓住。中心偏移量从22.09像素(7.30 mm)降低到8.09像素(2.65 mm),证明了该方法在缓解闭塞挑战和增强视觉系统的可靠性方面的有效性。
检查。论文是:•Max Planck 23。4。1858 Kiel•Arnold Sommerfeld 5.12。 1868Königsberg•Albert Einstein 14。 3。 1879 ULM•Ernest Rutherford 30。 8。 1871 Spring Grove•Max Burn 11 12. 1882 Breslau•James Franck 26。 8。 1882 Hamburg•Niels Bohr 7。 10。 1885哥本哈根•ErwinSchrödinger12。 8。 1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1858 Kiel•Arnold Sommerfeld 5.12。1868Königsberg•Albert Einstein 14。 3。 1879 ULM•Ernest Rutherford 30。 8。 1871 Spring Grove•Max Burn 11 12. 1882 Breslau•James Franck 26。 8。 1882 Hamburg•Niels Bohr 7。 10。 1885哥本哈根•ErwinSchrödinger12。 8。 1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1868Königsberg•Albert Einstein 14。3。1879 ULM•Ernest Rutherford 30。 8。 1871 Spring Grove•Max Burn 11 12. 1882 Breslau•James Franck 26。 8。 1882 Hamburg•Niels Bohr 7。 10。 1885哥本哈根•ErwinSchrödinger12。 8。 1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1879 ULM•Ernest Rutherford 30。8。1871 Spring Grove•Max Burn 11 12.1882 Breslau•James Franck 26。8。1882 Hamburg•Niels Bohr 7。10。1885哥本哈根•ErwinSchrödinger12。8。1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1887 VIENNA•WOLFGANG PAULI 25。4。1900维也纳•Werner Heisenberg 5.12。1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1901Würzburg•Enrico Fermi 29。9。1901罗马•Paul Dirac 8。8。1902 Bristol•Pascual Jordan 18。10。1902 Hannover•Lew Landau 22。1。1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。7。1911佛罗里达•理查德·费曼(Richard Feynman)11。5。1918皇后区,纽约•朱利安·施温格12。2。1918纽约市
由外部磁场造成的软机器因其与生物体和复杂环境相互作用的潜力而引起了显着关注。但是,它们的适应性和功能通常受到操作过程中刚性磁化的限制。在这项工作中,我们在操作过程中引入了动态可重编程的磁性软计算机,并通过各种磁场的协同作用在操作过程中进行原位重新确定的磁化功率。可振荡的谐振电路集成到机体中,从而通过不同频率的高频频率实现了对特定区域的可寻址和可感知的加热。机身由由低熔点合金和NDFEB微粒制成的微型头。加热时,合金液体会固定,允许在40吨脉冲编程场下旋转NDFEB微粒。冷却后,新的配置被锁定在适当的位置。此重编程过程对于单个或多台机器同样有效,从而实现了多种机器的多种模式变形和多个机器的合作。此外,通过结合可寻址的热致动,我们将示意多个机器人的原位组装。这项工作可能使具有增强功能的磁性软计算机可以实现。
