2023 年 7 月第 06 期 ________________________________________________________________________________ 基因组医学——涵盖临床前基础科学、临床开发和转化为日常患者干预——继续以惊人的速度发展。基因组医学在科学和技术层面的进步通过同行评审的期刊文献和支持性灰色文献得到广泛传播。作为这些技术文献的补充,越来越多的研究、分析和评论涉及基因组医学的治理、道德、监管和政策层面。这些内容大部分是通过学术期刊和灰色文献传播的。本摘要旨在捕捉和整理这些非技术内容的最实质性示例。此外,我们打算通过本摘要提供一份有用的摘要,总结多边机构、国际非政府组织、政府/监管机构、学术和研究机构、联盟和合作、基金会、投资者和商业组织发布的整个基因组医学生态系统的关键战略和计划公告。鉴于该领域的复杂性和发展速度,我们认识到本摘要将是指示性的,而不是详尽无遗的。我们欢迎您就如何使本摘要更加实用提出建议和想法。本摘要是 GE2P2 全球基金会的一项计划,基金会对其内容负全部责任。如有任何问题和意见,请直接联系编辑或副编辑:
在技术层面上,本文的发现揭示了与以下十二个技术有关的福利,chal lenges和关键因素的三重奏:物联网;人工智能;云计算;区块链;大数据技术;增强现实;自动化;机器人技术;增材制造;模拟;人间网和语义技术。在一般层面上,福利,挑战和关键因素的三重奏如下:收益包括供应链透明度,增强决策,供应链集成以及供应链过程优化。挑战包括高昂的成本,必要的技能,安全和隐私问题,基础设施发展的复杂性,供应链4.0中的协调性的复杂性以及技术本身内的固有复杂性。识别一般级别的关键因素的识别植根于业务技术的一致性,进一步分为三个一致方面:政权与新生基对准的关键因素,利基至政权一致性的关键因素以及政权和利基一致性的关键因素。与政权对齐相关的关键因素涉及供应链流程重新设计,数据管理和管理承诺。有关利基市场一致性的关键因素包括对制度解决方案提供商对政权环境的理解,技术设计和解决方案的自定义以及技术维护。与政权和利基一致性有关的关键因素包括提供必要的技能和知识,财务计划
我们为量子计算 (BQP) 构建了一个经典可验证的简洁交互式论证,其通信复杂度和验证器运行时间在 BQP 计算的运行时间内是多对数的(在安全参数中是多项式的)。我们的协议是安全的,假设不可区分混淆 (iO) 和带错学习 (LWE) 的后量子安全性。这是普通模型中量子计算的第一个简洁论证;先前的工作(Chia-Chung-Yamakawa,TCC '20)需要长公共参考字符串和非黑盒使用以随机预言机建模的哈希函数。在技术层面,我们重新审视了构建经典可验证量子计算的框架(Mahadev,FOCS '18)。我们为 Mahadev 的协议提供了一个独立的模块化安全性证明,我们认为这是独立的兴趣。我们的证明很容易推广到验证者的第一条消息(包含许多公钥)被压缩的场景。接下来,我们将压缩公钥的概念形式化;我们将对象视为受约束/可编程 PRF 的泛化,并基于不可区分性混淆对其进行实例化。最后,我们使用(足够可组合的)简洁的 NP 知识论证将上述协议编译成完全简洁的论证。使用我们的框架,我们实现了几个额外的结果,包括
共同体事实的网络与量子误差校正,基于测量的量子计算,对称性受保护的拓扑顺序和文本性有关。在这里,我们将此网络扩展到具有魔术状态的量子计算。在此计算方案中,某些准轴性函数的负效率是量子性的指标。但是,当构建该语句应用的Quasiprob-能力函数时,会在偶数和奇数局部希尔伯特空间维度的情况下出现明显的不同。在技术层面上,用魔术状态确定量子计算中的量子性指标依赖于Wigner函数的两种属性:它们与Cli Qurd群体的协方差以及Pauli测量的积极代表。在奇数中,总的Wigner函数 - 原始的Wigner函数对奇数维的希尔伯特空间的适应性 - 使这些属性具有这些特性。在均匀的维度中,不存在Gross的Wigner函数。在这里,我们讨论了更广泛的Wigner函数,例如Gross'是从操作员群中获得的。我们发现,这种cli od-ord-od-od-od-od-od-od-od-od-od-od-od-od-od-od-od-od-coariant wigner函数在任何偶数方面都不存在,此外,每当qudits的数量为n≥2时,鲍里的测量都不能在任何偶数维度上积极地表示。我们确定这种Wigner功能存在的障碍是共同的。
当前研究 我的主要研究兴趣是:量子场论、量子引力、弦理论。规范弦对偶、AdS/CFT 对应和强耦合系统。目前,我主要研究上述主题中的三个相关方面。它们是:(i) 可解动态 QFT 系统,尤其是作为其变形的各个维度的共形场论。这里的核心思想是在可解和解析范围内研究动态相及其之间的转变,否则很难获得。这些研究通常用作驱动量子系统的基准,但不仅限于此。(ii) 与此相关,至少在技术层面上,我感兴趣的是研究局部信息如何在量子(场论)系统中随时间传播以及其相关复杂性的动态。这方面相当具有现实意义,并且有望将传统的 QFT 思想与量子信息、其传播和扰乱物理学联系起来。 (iii) 我的第三个兴趣是探索黑洞的量子方面,这主要受到第 (i) 部分和第 (ii) 部分中现有和新兴文献的启发。特别是,我感兴趣的是了解如何通过适当的边界条件模拟黑洞的预期量子特性。这主要受到弦理论中对应于黑洞的候选微观状态几何的启发,但同时,我们的方法与系统的 UV 完成无关。
摘要 量子信息技术包括量子计算、量子通信和量子传感,是近几十年来出现的最重要的技术之一,它有望实现范式转变的计算能力,并带来重大的伦理影响。在技术层面上,量子信息处理的独特特性对计算的公平性和伦理约束具有影响。尽管其意义重大,但对此类量子技术的伦理影响进行过很少甚至没有结构化的研究。在本文中,我们通过提出道德量子计算(以及更广泛的量子信息处理)的路线图来填补文献中的这一空白,该路线图列出了未来的研究计划。我们总结了与伦理分析相关的量子信息处理(重点是量子计算)的关键要素,并列出了供考虑量子技术伦理的研究人员使用的分类法。特别是,我们展示了量子信息处理的独特特性如何导致不同的伦理影响(包括在机器学习的背景下)。我们将量子伦理置于量子信息科学、技术伦理和道德哲学的交叉学科中,以评估这一新兴技术的影响。我们提供了具体的例子,说明量子技术的出现如何引发规范和分布式伦理挑战。最后,我们提出了未来的研究方向,以帮助开创量子计算伦理的跨学科领域。
从 PATSTAT 数据库中提取专利数据,以衡量环境技术创新活动的演变。专利数据具有在技术层面高度分解的优势。得益于 OECD、EPO 和 IEA 过去几十年的大量工作,可以基于国际专利分类 (IPC)、合作专利分类系统 (CPC) 和广泛的关键词搜索制定详细的环境专利检索策略 (EPO、OECD/IEA,2021 年;Haščič & Migotto,2015 年)。欧洲专利局为 CCMT 技术开发的 Y02 标记方案尤其代表了一项重大进步 (EPO,2016 年)。本报告中介绍的检索策略基于 Haščič & Migotto (2015) 的环境技术检索策略。对公路运输的补充分析也依赖于 Aghion 等人的分类。 (2016)比较汽车行业的“清洁”(电动和混合动力)、“灰色”(改进的燃油效率内燃机)和“肮脏”(标准内燃机)创新。本报告中包含的所有图表均由 WIPO 经济部团队提供。图表代表基于 Haščič & Migotto(2015)的给定技术层次级别中专利家族总数的 3 年移动平均值。仅选择至少两项专利中提交的专利家族,以便专注于高质量专利。
上同调事实网络涉及量子误差修正、基于测量的量子计算、对称保护的拓扑序和语境性。在这里,我们将这个网络扩展到具有魔态的量子计算。在这个计算方案中,某些准概率函数的负性是量子性的一个指标。然而,在构造适用此陈述的准概率函数时,偶数和奇数局部希尔伯特空间维数的情况之间会出现显著差异。在技术层面上,在具有魔态的量子计算中将负性确立为量子性的指标依赖于 Wigner 函数的两个性质:它们相对于 Clifferd 群的协方差和 Pauli 测量的正表示。在奇数维度上,Gross 的 Wigner 函数(原始 Wigner 函数对奇数有限维希尔伯特空间的改编)具有这些性质。在偶数维度上,Gross 的 Wigner 函数不存在。这里我们讨论一类更广泛的 Wigner 函数,它们和 Gross 的函数一样,都是从算子基数获得的。我们发现,这种 Clifferd 协变 Wigner 函数在任何偶数维中都不存在,而且,只要量子数为 n ≥ 2 ,泡利测量就不能用它们在任何偶数维中正表示。我们确定,这种 Wigner 函数存在的障碍是同调的。
在欧洲市场上销售的基因编辑生物及其衍生食品和饲料产品属于 2001/18/EC 指令的范围。因此,专门检测和量化它们的可能性已成为优先事项。为此,基于 PCR 的方法(例如实时 PCR 和数字液滴 PCR)有望适用于基因编辑生物携带的单个变异点,即使在技术层面上可能具有挑战性。但是,还可能遇到与结果解释相关的其他问题。事实上,考虑到它可能通过自然或育种计划传播,这种单一变异的存在并不能自动证明基因编辑生物的存在。为了克服这一关键问题,我们提出了一个通用工作流程来开发和验证一种针对基因编辑生物的 PCR 方法,以针对其单个变异点。首先,基于计算机模拟分析,评估技术设计基于 PCR 的方法以及使用其单个变异点区分基因编辑生物的可能性。如果确认了这些参数,则将根据转基因检测的最低性能要求测试所开发的 PCR 方法的性能。通过开发一种专门针对携带单核苷酸插入的基因编辑大米的 2 重数字液滴 PCR 方法,成功地说明了所提出的一般工作流程的使用。因此,所提出的工作流程被视为支持主管部门进行食品和饲料可追溯性的关键工具。
在开始讨论 CRISPR 的伦理问题之前,我们先从技术层面阐明该过程的工作原理。CRISPR [1] 技术被称为“分子剪刀”,因为它能够定位特定 DNA 序列并在该位点切割 DNA。利用 CRISPR,研究人员已经找到了将细菌免疫系统重新用于基因编辑工具的方法,该工具在科学和医学领域有广泛的应用。它是如何工作的?细菌已经开发出一种系统来保护自己免受病毒(噬菌体)感染,该系统涉及“切割”噬菌体基因组。当第一次被噬菌体感染时,细菌会将一部分噬菌体基因组存储在自己的 DNA 中,并用 CRISPR 阵列间隔序列划定界限 [2]。然后它们会产生相应的 CRISPR RNA [3,2]。当噬菌体再次感染时,这种 RNA 与噬菌体 DNA 相匹配,这一过程会驱动一种细菌酶(一种称为 Cas9 的核酸内切酶 [4])切割噬菌体 DNA,从而摧毁噬菌体 [2]。通过合成将间隔序列改变为任何其他 RNA 序列,研究人员可以使用此工具靶向和切割几乎任何 DNA 序列 [2]。与以前的基因工程技术相比,这项技术更易于使用,因此对研究过程大有裨益 [2]。利用这些细菌防御系统组件在实验室中编辑基因,研究人员甚至可以同时靶向多个基因,这使他们能够研究由多个基因引起的疾病 [2]。