共同体事实的网络与量子误差校正,基于测量的量子计算,对称性受保护的拓扑顺序和文本性有关。在这里,我们将此网络扩展到具有魔术状态的量子计算。在此计算方案中,某些准轴性函数的负效率是量子性的指标。但是,当构建该语句应用的Quasiprob-能力函数时,会在偶数和奇数局部希尔伯特空间维度的情况下出现明显的不同。在技术层面上,用魔术状态确定量子计算中的量子性指标依赖于Wigner函数的两种属性:它们与Cli Qurd群体的协方差以及Pauli测量的积极代表。在奇数中,总的Wigner函数 - 原始的Wigner函数对奇数维的希尔伯特空间的适应性 - 使这些属性具有这些特性。在均匀的维度中,不存在Gross的Wigner函数。在这里,我们讨论了更广泛的Wigner函数,例如Gross'是从操作员群中获得的。我们发现,这种cli od-ord-od-od-od-od-od-od-od-od-od-od-od-od-od-od-od-od-coariant wigner函数在任何偶数方面都不存在,此外,每当qudits的数量为n≥2时,鲍里的测量都不能在任何偶数维度上积极地表示。我们确定这种Wigner功能存在的障碍是共同的。
主要关键词