微管在真核细胞的增殖、运输、信号传导和迁移中发挥着多种关键作用。因此,已开发出多种微管结合剂,用于不同的目的,包括用作杀虫剂、抗寄生虫剂和抗癌剂。在哺乳动物细胞中,微管既存在于间期细胞中,也存在于分裂细胞中。在后者中,组成有丝分裂纺锤体的微管具有高度动态性,对治疗抑制剂极其敏感。这解释了为什么改变微管功能的化合物已被证明对癌症患者具有高度活性。50 多年前发现的长春花生物碱 1 和近 40 年前首次分离的紫杉烷类药物目前用于治疗多种适应症,包括实体瘤 2 3 和血液系统恶性肿瘤 。它们最常用于联合化疗方案,包括一些治愈性 4 – 6
摘要。癌症仍然是全球第二大死亡原因。目前的研究重点是寻找新的抗癌疗法并阐明其作用机制。细胞氧化还原平衡是新疗法的一个有希望的目标,因为癌细胞由于代谢亢进和遗传不稳定而已经具有升高的氧化剂水平。尽管自由基积极参与重要的细胞信号通路,但它们也与某些疾病有关,包括癌症。本综述的目的是强调氧化应激在抗癌剂作用机制中的作用。正常细胞和癌细胞之间的细胞氧化还原平衡差异被讨论为潜在的抗癌靶点,以及可能改变氧化还原状态的各种已批准或实验药物的例子。这些药物与它们的促氧化或抗氧化机制有关,目的是强调这些机制在抗癌药物整体疗效中的重要性。
全身毒性严重限制了肿瘤坏死因子 (TNF) 作为抗癌剂的临床应用。靶向活性细胞因子 (AcTakine) 是一类具有改进治疗指数的新型免疫细胞因子。靶向 CD 13 的基于 TNF 的 AcTakine 能够选择性激活肿瘤新生血管,而体内没有任何可检测的毒性。粘附标记物的上调支持增强的 T 细胞浸润,从而分别通过 CAR T 细胞或与 CD 8 靶向 I 型干扰素 AcTakine 的联合疗法控制或消除实体肿瘤。与 CD 13 靶向 II 型干扰素 AcTakine 的联合治疗导致肿瘤新生血管的非常快速的破坏和大型已建立肿瘤的完全消退。由于不需要肿瘤标记物,因此可以安全有效地消除多种类型的肿瘤。
摘要:癌症包括一组复杂且异质性的疾病,对全球患者和医疗保健系统来说仍然是一个挑战。因此,开发先进的治疗策略以降低癌症相关发病率和死亡率趋势至关重要。科学家们一直致力于为抗癌剂创造高效的运载载体。在可能的材料中,环糊精 (CD) 在过去几年中引起了越来越多的关注,从而导致了有前途的抗肿瘤纳米药物的出现。研究人员利用其有利的化学结构、易于改性、天然来源、生物相容性、低免疫原性和商业可用性,研究了针对多种癌症的基于 CD 的治疗制剂。在这方面,在本文中,我们简要介绍了 CD 在设计高性能纳米载体方面的特性,并进一步回顾了基于 CD 的运载系统在癌症管理中的一些最新潜在应用。
摘要淀粉酪蛋白琼脂(SCA)用于检测糖聚糖海洋细菌和主要是放线菌。放线菌是真菌样细菌,形成长长的细丝,延伸到土壤中。它们是革兰氏阳性的丝状和/或分支杆菌的大组。放线菌已经从陆地来源中分离出来,尽管几十年前出现了从海洋沉积物中回收的菌丝体形成放线菌的第一个报道。海洋沉积物是隔离新产品的新型放线菌的已知潜在来源,并被公认为是新型抗生素和抗癌剂的来源。放线菌通过分解和转化各种复杂的有机残留物,对环境产生广泛的影响。放线菌代表了在环境中发现的重要一组微生物,不仅在治疗应用中发挥了重要作用,而且在有机物的回收中也起着重要作用。
黑色素瘤是最具侵袭性的皮肤癌类型,对传统化疗的耐药性是其预后不良的主要原因。代谢紊乱导致活性氧物质产生增加,从而激活 NRF2 依赖性抗氧化反应以抵抗氧化应激。NRF2 的这种保护功能是癌症治疗耐药性的主要原因,因为 BRAF 抑制剂等抗癌剂也会诱导 NRF2 依赖性抗氧化反应。我们曾报道,激活 STING 后产生的 I 型干扰素会消除 NRF2 功能。因此,我们研究了 STING 激动剂(如新开发的二聚氨基苯并咪唑 (diABZI))是否可以使黑色素瘤细胞对临床使用的 BRAF 抑制剂敏感。我们的结果表明,与 BRAF 抑制剂联合使用时,diABZI 对 STING 的药理学激活会下调 NRF2 依赖性抗氧化反应并增强黑色素瘤细胞的细胞死亡。
摘要。癌症仍然是全球死亡的第二大原因。研究目前专注于寻找新颖的抗癌疗法并阐明其作用机理。细胞氧化还原平衡是新疗法的有希望的靶标,因为癌细胞由于超级代谢和遗传不稳定而导致的氧化剂水平升高。尽管自由基积极参与重要的细胞信号传导途径,但它们也与某些疾病有关,包括癌症。本综述的目的是强调氧化应激参与抗癌剂作用机理。正常细胞和癌细胞之间细胞氧化还原平衡的差异被讨论为潜在的抗癌靶标,以及可能改变氧化还原状态的批准或实验药物的各种例子。这些药物是与它们的促氧化剂或抗氧化剂机制有关的,其目的是强调此类机制在抗癌药物的总体疗效中的重要性。
脂质纳米颗粒(LNP)最近几个月因其用作几种Messenger RNA(mRNA)的首选递送技术而受到了极大的关注,这些疫苗是为预防Covid-19的开发而开发的。脂质纳米颗粒封装了包括mRNA在内的遗传物质以及其他一系列生物活性剂的能力,可控制向靶细胞或器官部位的受控递送,现已在临床上在临床上得到证明,在近30年的商业用途中。临床性能的悠久历史,以及它们迅速发展并扩大到成品的能力,使LNP成为基于基因和细胞的疗法和其他纳米医学的事实上的标准。除了mRNA疫苗外,基于LNP的配方已成为开发许多复杂肠胃外产品的黄金标准,例如抗癌剂,抗生素,药物组合和个性化药物。
摘要:天然产物因其多样的化学结构和生物活性而被证明是有前途的抗癌剂。本综述探讨了它们在癌症治疗中的核心作用,重点介绍了它们的作用机制和治疗益处。药用植物含有生物活性化合物,如黄酮类化合物、生物碱、萜类化合物和多酚,它们具有各种抗癌特性。这些化合物诱导细胞凋亡、抑制细胞增殖和细胞周期进程、干扰微管形成、作用于拓扑异构酶靶标、抑制血管生成、调节关键信号通路、改善肿瘤微环境、逆转耐药性和激活免疫细胞。草药抗癌药物具有治疗优势,特别是对癌细胞的选择性毒性,减少了与常规化疗相关的不良副作用。最近的研究和临床试验强调了草药在减轻副作用、提高化疗耐受性和与常规治疗产生协同作用方面的好处。例如,草药 SH003 被发现在治疗实体癌方面是安全且可能有效的,而褐藻糖胶则表现出对晚期癌症患者有益的抗炎特性。目前,草药抗癌剂的研究领域非常广泛。许多研究和临床试验正在研究它们在肺癌、前列腺癌、乳腺癌和肝细胞癌等各种癌症中的疗效、安全性和作用机制。有希望的发展包括多药理学方法、联合疗法、免疫调节和生活质量的改善。然而,天然产物作为抗癌药物的开发和使用仍然存在挑战,例如需要进一步研究其作用机制、可能的药物相互作用和最佳剂量。标准化草药提取物、提高生物利用度和递送以及克服监管和接受障碍是需要解决的关键问题。尽管如此,天然产物的良好抗癌作用和治疗益处值得进一步研究和开发。多学科合作对于推进草药癌症治疗并将这些药物整合到主流癌症治疗中至关重要。关键词:草药、抗癌、化疗、癌症治疗、耐药性
天然化合物因其程序性坏死特性而受到广泛研究。筛选此类化合物的传统方法之一是使用浓缩植物提取物而不分离活性部分来了解药理活性。在过去的二十年里,现代医学主要依赖于一两种复杂的活性和异构体化合物的分离和纯化。多靶点药物的概念从 2000 年代初首次提出的创新模式迅速而令人印象深刻地发展成为 2021 年药物开发的流行趋势之一。或者,基于片段的药物发现也被用于确定有效的天然抗癌剂的靶点药物发现,它基于明确的片段,而不是使用天然混合物。本综述总结了天然抗癌化合物的当前关键进展;计算机辅助/基于片段的结构解析和用于探索天然化合物的多靶点方法。