摘要:有效的大脑功能需要多达总氧气摄入量的20%才能支持正常的神经元细胞功能。这种氧的使用水平会导致自由基的产生,因此可能导致氧化应激,并可能导致与年龄相关的认知衰减,甚至神经退行性疾病。该系统的调节需要一个复杂的监视网络以维持适当的氧气稳态。此外,大脑中线粒体的高含量具有升高的葡萄糖需求,因此需要正常的氧化还原平衡。维持这种情况是由适应性应激反应途径介导的,该途径允许细胞存活氧化应激并最大程度地减少细胞损伤。这些应力途径依赖于内质网(ER)的适当功能以及展开的蛋白质反应(UPR)的激活,这是一种导致正常ER功能和细胞存活的细胞途径。有趣的是,UPR具有两个相反的信号通路,一种促进细胞存活,一种诱导细胞凋亡。在这篇叙事综述中,我们讨论了UPR信号通路的相对作用,以及对这些压力途径的更好理解如何有可能允许开发有效的策略,以防止与年龄相关的认知衰减以及治疗神经退行性疾病。
,Erwin Fraiponts 8,Gary Tresadern 4,Peter W. M. Roevens 9,Harrie J. M. Gijsen 3和Bart de Strooper 1,10 *,来自1 Neuroscience,Ku Leuven,Leuven,Leuven,Belgium,Belgium; 2脑和疾病研究中心,VIB,鲁汶,比利时; 3发现化学的拆分和4计算化学的拆分,詹森研究与开发,詹森制药(Janssen Pharmaceutica NV),比利时贝尔斯(Beerse); 5个鼻虫生物发现,西班牙巴塞罗那; 6西班牙巴塞罗那巴塞罗那超级计算中心的生命科学系6; 7西班牙巴塞罗那的Catalana de Recerca I EstudisAvançats(ICREA); 8查尔斯河实验室,比利时贝尔斯; 9校园战略与合作伙伴关系,比利时贝尔斯,Janssen Pharmaceutica NV; 10英国伦敦大学伦敦大学学院痴呆研究所
摘要人的大脑在微观和宏观尺度上具有高度复杂的结构。越来越多的证据表明,机械力在皮质折叠中的作用 - 人脑的经典标志。然而,微观尺度上的细胞过程与宏观上的机械力之间的联系仍未得到充分理解。最近的发现表明,一个额外的增殖区域(OSVZ)对人皮质的特定大小和复杂性是决定性的。为了更好地了解OSVZ如何影响皮层折叠,我们建立了一个多场计算模型,该模型将细胞在不同区域中的细胞增殖和细胞尺度上的迁移与在器官尺度上的生长和皮质折叠结合在一起,通过将对流扩散模型与有限生长理论相结合。我们根据人类胎儿大脑的组织学染色部分的数据来验证我们的模型,并预测3D模式形成。最后,我们解决了有关OSVZ在形成皮质褶皱中的作用的开放问题。所提出的框架不仅可以提高我们对人脑的理解,而且最终可以帮助诊断和治疗因细胞发育中的破坏以及皮质发育的相关畸形而引起的神经元疾病。
摘要:机器学习方法的最新进展对蛋白质结构预测产生了重大影响,但准确生成和表征蛋白质折叠途径仍然难以实现。在这里,我们展示了如何使用在残基级接触图定义的空间中运行的定向行走策略生成蛋白质折叠轨迹。这种双端策略将蛋白质折叠视为势能表面上连接最小值之间的一系列离散转换。随后对每个转换进行反应路径分析,可以对每条蛋白质折叠路径进行热力学和动力学表征。我们根据由疏水和极性残基构成的一系列模型粗粒度蛋白质的直接分子动力学模拟,验证了我们的离散行走策略生成的蛋白质折叠路径。这种比较表明,基于中间能量屏障对离散路径进行排序为识别物理上合理的折叠集合提供了一种方便的途径。重要的是,通过在蛋白质接触图空间中使用定向行走,我们绕过了与蛋白质折叠研究相关的几个传统挑战,即需要较长的时间尺度和选择特定的顺序参数来驱动折叠过程。因此,我们的方法为研究蛋白质折叠问题提供了一种有用的新途径。■ 简介
在过去的几十年中,层状材料的屈曲不稳定性一直是分析、实验和数值研究的主题。这些系统传统上被认为是无应力表面,而表面压力的影响研究不足。在这项研究中,我们开发了一个双层压缩的有限元模型,发现它在表面压力下的表现不同。我们研究了双层系统在两种压缩模式(外部施加和内部生长产生的)下的屈曲开始、初始波长和后屈曲行为。在各种刚度比(1 < μ f / μ s < 100)中,我们观察到在存在表面压力的情况下稳定性会降低,尤其是在低刚度对比度状态(μ f / μ s < 10)下。我们的结果表明压力边界条件对于双层系统稳定性分析的重要性,尤其是在软物质和生物物质物理学中,例如在脑脊液压力下大脑皮层的折叠,其中压力可能会影响形态发生和屈曲模式。[DOI:10.1115 / 1.4057020]
在过去的几十年中,层状材料的屈曲不稳定性一直是分析、实验和数值研究的主题。这些系统传统上被认为是无应力表面,而表面压力的影响研究不足。在这项研究中,我们开发了一个双层压缩的有限元模型,发现它在表面压力下的表现不同。我们研究了双层系统在两种压缩模式(外部施加和内部生长产生的)下的屈曲开始、初始波长和后屈曲行为。在各种刚度比(1 < μ f / μ s < 100)中,我们观察到在存在表面压力的情况下稳定性会降低,尤其是在低刚度对比度状态(μ f / μ s < 10)下。我们的结果表明压力边界条件对于双层系统稳定性分析的重要性,尤其是在软物质和生物物质物理学中,例如在脑脊液压力下大脑皮层的折叠,其中压力可能会影响形态发生和屈曲模式。[DOI:10.1115 / 1.4057020]
摘要 在哺乳动物进化的过程中,大脑尺寸和皮质折叠反复增加和减少。识别与这些性状共同进化的遗传元素,其序列或功能特性可为进化和发育机制提供独特信息。TRNP1 是这种比较方法的一个很好的候选者,因为它控制着小鼠和雪貂神经祖细胞的增殖。在这里,我们研究了 TRNP1 的调控序列和编码序列对 30 多种哺乳动物大脑尺寸和皮质折叠的贡献。我们发现 TRNP1 蛋白质进化的速度 ( ω ) 与大脑尺寸显著相关,与皮质折叠的相关性略低,与身体尺寸的相关性小得多。这种大脑相关性比 95% 以上的随机对照蛋白更强。这种共同进化可能影响 TRNP1 活性,因为我们发现来自大脑较大和皮质折叠较多物种的 TRNP1 会诱导神经干细胞的更高增殖率。此外,我们在大规模并行报告基因测定中比较了 TRNP1 的假定顺式调控元件 (CRE) 的活性,并确定了一种可能与旧世界猴和猿类的皮质折叠共同进化的 CRE。我们的分析表明,增加 TRNP1 活性的编码和调控变化被积极地选择为脑容量和皮质折叠增加的原因或结果。它们还提供了一个示例,说明系统发育方法如何为生物机制提供信息,尤其是当与多个物种的分子表型相结合时。
一类DNA折叠/结构统称为G-四链体(G4),通常在鸟嘌呤富基因组的区域中形成。G4 DNA被认为在基因转录和端粒介导的端粒维持中具有功能作用,因此是药物的靶标。导致鸟嘌呤四局部堆叠的分子相互作用的细节并不理解,这限制了G4序列的可药用性的合理方法。为了进一步探索这些相互作用,我们采用了电子振动 - 二维红外线(EVV 2DIR)光谱法,以测量由MyC2345核苷酸序列形成的平行链链G- Qu-Qu-Qu-Qu-Qubadruplex DNA的扩展振动偶联光谱。我们还跟踪了与G4折叠相关的结构变化,该变化是K + -ION浓度的函数,以产生进一步的见解。为了对折叠过程在振动耦合特性方面产生的结构元素进行分类,我们使用了使用密度功能理论的量子化学计算。这导致了与给定结构相关的耦合光谱的预测,这些耦合光谱与从EVV 2 -DIR光谱获得的实验耦合数据进行了比较。总体而言,在折叠过程中对102个耦合峰进行了实验鉴定并遵循。注意到了许多现象,并与折叠形式的形成相关。这包括频率变化,交叉强度的变化以及新耦合峰的出现。可以将新峰分配给复合物中特定化学基团之间的耦合,我们使用2DIR数据在我们的实验条件下为这种特定类型的G4提出了折叠序列。总体而言,实验2DIR数据和DFT计算的组合表明,在添加钾离子之前,在初始DNA中可能已经存在鸟嘌呤四重奏,但是这些四重奏是未储存的,直到添加钾离子为止,在这一点上形成了完整的G4结构。
背景和目标:本文首次设计并介绍了一种基于电流镜和折叠级联拓扑组合的新型折叠镜 (FM) 跨阻放大器 (TIA) 结构。跨阻放大器级是接收器系统中最关键的构建块。这种新型拓扑基于电流镜拓扑和折叠级联拓扑的组合,采用有源元件设计。其理念是在输入节点使用电流镜拓扑。在所提出的电路中,与许多其他已报道的设计不同,信号电流(而不是电压)被放大直到到达输出节点。由于使用二极管连接的晶体管作为电流镜拓扑的一部分,所提出的 TIA 具有低输入电阻的优势,这有助于隔离主要输入电容。因此,以相当低的功耗实现了 5Gbps 的数据速率。此外,设计的电路仅使用了六个有源元件,占用的芯片面积很小,同时提供 40.6dBΩ 的跨阻抗增益、3.55GHz 频率带宽和 664nArms 输入参考噪声,并且仅消耗 315µW 功率和 1V 电源。结果证明了所提出的电路结构作为低功耗 TIA 级的正确性能。方法:所提出的拓扑基于电流镜拓扑和折叠级联拓扑的组合。使用 Hspice 软件中的 90nm CMOS 技术参数模拟了所提出的折叠镜 TIA 的电路性能。此外,对晶体管的宽度和长度尺寸进行了 200 次蒙特卡罗分析,以分析制造工艺。结果:所提出的 FM TIA 电路提供 40.6dBΩ 跨阻增益和 3.55GHz 频率带宽,同时使用 1V 电源仅消耗 315µW 功率。此外,由于分析通信应用中接收器电路中输出信号的质量至关重要,所提出的 FM TIA 对于 50µA 输入信号的眼图打开约 5mV,而对于 100µA 输入信号,眼图垂直打开约 10mV。因此,可以清楚地显示眼图的垂直和水平开口。此外,跨阻增益的蒙特卡罗分析呈现正态分布,平均值为 40.6dBΩ,标准差为 0.4dBΩ。此外,FM TIA 的输入电阻值在低频时等于 84.4Ω,在 -3dB 频率时达到 75Ω。通过对反馈网络对输入电阻的影响的分析,得出了在没有反馈网络的情况下,输入电阻可达1.4MΩ,由此可见反馈网络的存在对于实现宽带系统的重要性。结论:本文本文介绍了一种基于电流镜拓扑和折叠级联拓扑组合的跨阻放大器,该放大器可放大电流信号并将其转换为输出节点的电压。由于输入节点存在二极管连接的晶体管,因此 TIA 的输入电阻相对较小。此外,六个晶体管中有四个是 PMOS 晶体管,与 NMOS 晶体管相比,它们的热噪声较小。此外,由于前馈网络中未使用无源元件,因此所提出的折叠镜拓扑占用的片上面积相对较小。使用 90nm CMOS 技术参数的结果显示,跨阻增益为 40.6dBΩ,频率带宽为 3.55GHz,输入参考噪声为 664nArms,使用 1 伏电源时功耗仅为 315µW,这表明所提出的电路作为低功耗构建块的性能良好。
