柔性且可拉伸的生物电子学提供了电子和生物系统之间的生物相容性界面,并受到了对各种生物系统的现场监测的极大关注。有机电子中的巨大进展已使有机半导体以及其他有机电子材料,由于其潜在的机械合规性和生物相容性,用于开发可穿戴,可植入和生物相容性电子电路的理想候选者。有机电化学晶体管(OECT)作为新兴的有机电子构建块,由于离子性质在开关行为,低驾驶电压(<1 V)和高跨导能(在毫米范围内)而引起的生物传感具有显着优势。在过去的几年中,据报道,生化和生物电传感器构建富裕/可拉伸OECT(FSOECTS)方面的显着进步。在这方面,为了总结这一新兴领域的重大研究成就,本综述首先讨论了FSOECT的结构和关键特征,包括工作原理,材料和建筑工程。接下来,总结了FSOECT是关键组成部分的各种相关的生理传感应用。最后,讨论了进一步推进FSOECT生理传感器的主要挑战和机会。
本研究调查了制造后热处理对激光粉末定向能量沉积 (LP-DED) 制备的 15-5 PH 不锈钢 (SS) 的微观结构和力学性能的影响。进行了各种热处理程序 (CA-H900 和 CA-H1150) 以评估它们对 LP-DED 15-5 PH SS 拉伸行为的影响。使用扫描电子显微镜来表征微观结构特征和断裂表面。进行拉伸试验以评估低温和室温下的力学性能。CA-H1150 处理试样在拉伸试验后的面积减少率明显高于 CA-H900 试样,而 CA-H900 试样的极限拉伸强度和屈服强度高于 CA-H1150 试样。根据微观结构和断裂表面,讨论了 LP-DED 15-5 PH SS 在不同热处理条件下的力学行为。
摘要虽然众所周知,机械动力学在神经发生或神经变性等关键过程的神经分化中具有影响力,但对神经干细胞疗法的研究通常集中在生化相互作用上,而不是机械方面,而不是机械方面,通常会导致低效性和无法满足的潜力。因此,当前的研究试图使用常规的二维(2D)平面底物来阐明机械刺激对神经性能的影响。然而,这些2D底物无法捕获体内神经干细胞环境的定义三维(3D)特征。为了填补这一研究差距,我们使用长链聚乙烯糖二丙烯酸酯(PEGDA)和明胶 - 乙糖酰基酰基(Gelma)合成了一系列软弹性3D水凝胶,以模仿3D细胞培养的神经组织机械环境。通过改变聚合物的浓度,我们获得了低至10 kPa的拉伸模量和低至0.8 kPa的压力模量的生物塑料水凝胶。体外结果表明,Gelma-PEGDA水凝胶具有支持神经细胞生长,增殖和分化以及神经突生长所需的高生物相容性。然后,我们研究了机械拉伸对神经细胞行为的影响,并观察到机械拉伸可以显着增强神经突的延伸和轴突伸长。另外,神经突在拉伸方向上更方向定向。免疫细胞化学和相对基因表达数据还表明,机械张力可以上调神经分化蛋白和基因的表达,包括GFAP和βIII-微管蛋白。总体而言,这项研究表明,除了改善了对特定谱系神经分化的凝胶-PEGDA的特定机械性能外,水凝胶拉伸还成为改善神经干细胞疗法治疗结果的潜在诱人策略。
摘要。对 5754、6061 和 7075 铝合金进行了 RCS 工艺提高机械强度的潜力评估,这三种铝合金呈现出与各自合金元素相关的不同硬化机制。这项工作比较了不同合金通过 RCS 处理后织构和机械性能的演变。通过显微硬度测量、不同温度和应变速率下的拉伸试验来评估机械性能,以评估应变速率敏感性。结果表明,经过两次 RCS 处理后,6061 和 5754 合金在 300°C 下表现出相对较高的应变速率敏感性。此外,5754、6061 和 7075 合金的硬度分别增加了 27%、22%、15%。显示出由于不同的硬化机制而提高机械阻力的潜力。此外,通过 X 射线衍射获得极图并计算其取向分布函数来表征晶体织构。结果表明,三种铝合金表现出相同的趋势,即初始织构组分得以保留,但织构化体积有所减少。
由于暴露于高压气态氢,氢环境脆化 (HEE) 所引起的机械性能下降是液氢推进系统中许多材料面临的关键问题。自 20 世纪 80 年代初以来,美国国家航空航天局 (NASA) 一直在马歇尔太空飞行中心 (MSFC) 进行高压氢环境下的拉伸试验,以建立推进应用候选材料数据库。MSFC 过去常常在高压氢环境中以 0.005 in/in/min 的应变速率进行平滑拉伸试验,以评估材料的 HEE 敏感性。1 根据已发布的 NASA TM 的建议,拉伸试验应变速率近年来改为 0.0005 in/in/min。2 有充分的证据表明,平滑拉伸试验应变速率会影响合金 718、4340 钢、316 不锈钢和许多其他合金的 HEE 敏感性。 1,3–7 因此,以 0.005 英寸/英寸/分钟和 0.0005 英寸/英寸/分钟生成的数据显示,许多合金的 HEE 敏感性存在显著差异。
1.1.2 冲压喷气发动机...................................................................................................................... 8
近年来,激光添加剂制造(LAM)技术引发了航空航天场的制造革命[1,2]。该技术使用高能激光束融化合金粉末。熔融池是连续形成的,然后迅速形成固体,从而将层沉积到近乎网络的金属成分[3]。钛合金作为重要的结构金属具有高强度,高韧性,低密度和良好耐腐蚀性的优势[4-6]。使用LAM准备钛合金零件有望获得高性能和高质量的关键组件。钛合金零件在LAM过程中经历了高温梯度和高冷却速率,从而导致与传统材料的微观结构差异很大。通常,在先前的β晶粒中存在α相,马氏体α'相或两者的混合物,并且连续α相也沿先前的β晶界嵌入[7-9]。Carroll等。 [10]报告说,晶界α相和先前的β晶粒形态引起了添加性生产的钛合金的各向异性机械性能。 此外,具有高强度和低韧性的α相导致形成部分的强度和韧性不匹配[11]。 通过热处理过程,可以有效地控制阶段的形态,大小和比例,从而获得良好的机械性能[12-15]。 Yadroitsev等。 [16]报告说,在β相过渡温度附近产生了大量球形α相。 Zhao等。Carroll等。[10]报告说,晶界α相和先前的β晶粒形态引起了添加性生产的钛合金的各向异性机械性能。此外,具有高强度和低韧性的α相导致形成部分的强度和韧性不匹配[11]。通过热处理过程,可以有效地控制阶段的形态,大小和比例,从而获得良好的机械性能[12-15]。Yadroitsev等。 [16]报告说,在β相过渡温度附近产生了大量球形α相。 Zhao等。Yadroitsev等。[16]报告说,在β相过渡温度附近产生了大量球形α相。Zhao等。Zhao等。[17]通过控制冷却速率,获得了两种类型的篮子编织和菌落结构的微观结构。拉伸结果表明,前者具有更高的强度和韧性,这可能归因于篮子编织结构中的层状α相,从而有效地减少了脱位长度并分散局部应力浓度。但是,由于缺乏在拉伸过程中微观结构演变的观察,变形和失败
© 2023 作者,经 Springer Nature Limited 独家授权。保留所有权利。本文的此版本已在同行评审后被接受发表,并受 Springer Nature 的 AM 使用条款约束,但不是记录版本,不反映接受后的改进或任何更正。记录版本可在线获取:http://dx.doi.org/10.1038/s41586-022-05579-z。
1) 在研究范围内,抗拉强度和屈服强度随应变速率增加而增加。2) 屈服强度的变化趋势与抗拉强度非常相似。3) 延展性随应变速率增加而降低。4) 应变敏感性m对于Sn-9Zn-0.2Ag-0.6Sb为0.0831,对于Sn-9Zn-0.2Ag-0.8Sb为0.1455,对于Sn-9Zn-0.6Ag-0.2Sb为0.1274,对于Sn-9Zn-0.8Ag-0.2Sb为0.1346。5) 所有m值都小于0.3,因此本文研究的无铅焊料均不会出现超塑性行为。6) 需要进一步研究这些焊料合金在不同温度和应变速率下的拉伸性能,以更详细地了解热力学硬化响应。
