虚构人工智能与当前人工智能之间的另一个主要区别是它们的自主性。虚构人工智能系统(如《2001:太空漫游》中的 HAL 9000)能够在没有人类干预的情况下自行做出决策。而当前的人工智能则需要人类的监督和干预。如果将虚构人工智能与当前人工智能进行比较,它们之间最重要的区别之一就是自主性水平。电影和文学作品中呈现的虚构人工智能通常被描绘成具有完全独立性和决策能力的人类。而当前的人工智能旨在执行特定任务,虽然它可以“学习”并随着时间的推移而发展,但仍然需要人类的干预和监督。
在这种情况下增强医生的能力和能力的一种方法,并帮助他们进行连续的伤亡监测,分类和治疗,是依靠新兴的自主或半自治系统,例如基于人工智能和封闭式弹力控制系统的临床决策支持系统。8 - 20但是,要开发这种人工智能系统,我们必须根据成千上万的受试者的顺序有大量的临床或实验数据,这是不切实际的。另一种可行的解决方案是使用验证良好的,基于人类生理的合并模型来生成战场伤害和治疗解决方案的全面合成数据库,以反映资源有限的,延长的现场护理环境。这些模型需要重现与出血和气道妥协相关的人类生理学的关键方面,前两个战场伤害,并产生至关重要的数据,这些数据显示出与临床观察的定性和定量一致性。开发数学模型,以有效地重现人类对出血和气道妥协以及相关治疗的反应,我们必须考虑一种综合方法,该方法代表心血管和呼吸系统系统,并说明其耦合。21 - 25出血直接通过心脏动力学直接影响血液动力学,从而损害了流向肺部的血液,干扰了气体交换并降低了呼吸系统的功能。21,22同样,气道妥协直接影响通风,导致缺氧和高碳酸盐,进而对心血管系统的功能产生负面影响。23 - 25虽然已经开发了许多数学模型来代表心血管和呼吸系统,但26 - 41绝大多数代表心脏血管系统26 - 30或呼吸系统,或者呼吸系统,31 - 35,只有少数核算两者。36 - 44即使在这两个系统中,大多数人36 - 42也不能考虑出血和液体复苏的特征,因为它们没有间质液体室以补偿血液体积的变化,45
摘要:假肢的开发和制造是医疗技术发展的重要趋势之一。考虑到现代电子技术和自动化系统的发展及其机动性和紧凑性,实际任务是制造一种假肢,其拟人化特性接近功能齐全的人体肢体,并能够高精度地再现其基本动作。本文分析了电子假肢控制系统开发的主要方向。本文介绍了拟人假肢原型及其控制系统的实际实施描述和结果。我们开发了一种拟人化的多指假手,用于机器人研究和教学应用。设计的机械手是其他已知 3D 打印机械手的低成本替代品,具有 21 个自由度——每个手指 4 个自由度,拇指 3 个自由度,2 个自由度负责机械手在空间中的位置。所展示的机械臂的开源机械设计具有接近人手的质量尺寸和运动参数,具有自主电池操作的可能性,能够连接不同的控制系统,例如计算机、脑电图仪、触摸手套。
图灵机能模拟人类思维吗?如果假设丘奇-图灵论题是正确的,那么图灵机应该能够模拟人类思维。在本文中,我将通过提供强有力的数学论据来反驳丘奇-图灵论题,以此来挑战这一假设。首先,我将说明,有些决策问题对于人类来说是可计算的,但对于图灵机来说却是无法计算的。接下来,我将通过一个思想实验来说明,配备图灵机作为控制单元的人形机器人无法执行所有人类可完成的物理任务。最后,我将说明,涉及顺序量子波函数坍缩的量子力学计算设备可以计算图灵机无法计算的序列。这些结果推翻了丘奇-图灵论题,并得出了图灵机无法模拟人类思维的结论。结合这些结果,我认为,人类大脑中的量子效应是人类思维计算能力的基础。
越来越多的证据表明,大脑替代物将引起医学领域研究人员和医生的极大兴趣。它们目前主要用于教育和培训目的,或验证医疗器械的适当功能。根据目的,人们使用了各种具有特定和精确的机械和生物物理特性的材料。最近,它们被用来评估植入式设备的生物相容性,但它们仍未得到验证,无法用于研究设备中浸出成分的迁移。这篇小型评论展示了大脑模型的各种方法和用途,它们准时收敛。所有这些模型都是对数值模型的补充,它们各自受益于数值模型的进步。它还提出了分析植入式设备中浸出成分的研究途径。
在这项工作中,我们开发了一种量子计算机算法,用于获取人造石墨烯 (AG) 中自由移动电子的基态和基能。此外,该算法还针对小型 AG 片进行了模拟。对于我们的模拟,我们使用 HPC 资源,因为在量子物质模拟中,随着系统尺寸的增加,传统计算资源的成本呈指数增长。我们的研究重点是石墨烯类似物:基于蜂窝晶格势的二维材料。这些晶格产生了狄拉克电子和石墨烯的主要电子特性,同时提供了更多可调平台,允许更大的电子-电子相互作用或自旋轨道耦合,并探索物质的新相。我们的算法由一个量子电路组成,该电路模拟绝热(渐进)演化,从具有非相互作用电子的 AG 系统(在我们的量子电路中很容易解决和准备)到具有任意库仑相互作用的系统(我们不知道其解决方案)。 AG 中的电子用二维费米-哈伯德哈密顿量建模,包括动能、自旋轨道和库仑项。我们首先使用 Jordan-Wigner 变换将 AG 轨道映射到一维量子比特串(或量子位,量子信息的最小单位)。晶格的每个位置都映射到一对量子比特,每个可能的自旋一个。为了准备初始的、无相互作用的状态,我们使用高斯状态准备,其缩放比例为 O(N) [1]。电路的演化部分基于之前为方格开发的策略 [2],将缩放比例缩小到 O(N x),其中 N x 是晶格的最短维度。因此,量子电路的大小和深度随着系统的大小线性增长。电路的所有部分,包括测量,都只涉及最近邻量子门。在巴塞罗那超级计算中心的 Marenostrum 4 超级计算机上,利用 Openfermion 程序包 [3] 和 Cirq [4] 和 qibo [5] 模拟器以及结构化张量网络 (TN) 和 quimb [6],对最多具有四个六边形格子的量子电路进行模拟。这项工作还利用了最近开发的 TN 分布式库 RosneT [7] 将模拟扩展到更大的格子。我们研究了不同六边形格子的量子算法的效率(即量子比特数量和电路深度的成本)及其经典模拟的效率(就计算机内存和时间而言),以及 HPC。这些模拟用于测试量子算法并优化绝热演化速度,使我们能够估算更大、更昂贵的系统的最佳电路深度。他们还探索了基于量子电路的 TN 算法模拟费米-哈伯德模型的效率,从而深入了解了这些系统的实际复杂性。
目的 脑大小和生长研究历史悠久,且充满争议,但正常的脑容量发育尚未得到充分描述。特别是,正常的脑生长和脑脊液 (CSF) 积聚关系至关重要,因为它会受到儿童早期多种疾病的影响,这些疾病会影响脑生长和液体积聚,例如感染、出血、脑积水和多种先天性疾病。本研究的作者旨在描述正常的脑容量增长,特别是在脑脊液积聚的情况下。 方法 作者分析了 505 名健康儿童受试者从出生到 18 岁的 1067 次磁共振成像扫描,以量化脑的组成部分和区域体积。使用平滑样条方差分析比较了不同性别和不同半球的体积轨迹。使用位置、规模和形状的广义加性模型开发了人口增长曲线。 结果 脑容量在 10-12 岁时达到峰值。男性的年龄调整后总脑容量大于女性,体型标准化程序并未消除这一差异。然而,脑体积与脑脊液体积的比率揭示了一种普遍的年龄相关关系,与性别或体型无关。结论这些发现使得规范生长曲线能够应用于管理各种儿童疾病,这些疾病与认知发展、脑部生长和体液积聚相互关联。
图 1 性格拟人化和心智理论网络激活。(a)用拟人化个体差异问卷测量的样本性格拟人化,(b)在观看动画电影时,与观看引发疼痛感知的场景相比,在观察引发心理化的场景时,心智理论网络的六个区域的激活情况,性格拟人化和活动之间没有明确的关系(c)在心智理论网络中和(d)在各个区域内(二次预测因子为红色,线性预测因子为蓝色)。指数在(c)和(d)中居中并按比例缩放。dmpfc,背内侧前额皮质;mmpfc,中内侧前额皮质;prec,楔前叶;rtpj 和 ltpj,右侧和左侧颞顶交界处;vmpfc,腹内侧前额皮质
摘要 本文的核心兴趣是拟人化社交机器人 Ai-Da(Aidan Meller 画廊/牛津大学),它被视为文化和表征手势相互作用的参与者。这些手势决定了该机器人的呈现方式,即如何表达、解释和推广其活动。本文批评了在围绕该机器人的呈现策略中使用跨历史话语,因为这种话语强化了所谓的“机器神话”。讨论的重点是这个绘画机器人的个性化和体现。有人认为,为 Ai-Da 提供令人回味的硅胶脸和拟人化的身体是一种社会政治决定,它塑造了公众对社交机器人的普遍想象。