到 2027 年的预期成果: • 处于 PCP-FMD 0 和 1 阶段的国家:至少达到 PCP-FMD 2 阶段 • 处于 PCP-FMD 2 和 3 阶段的国家:在根除 FMDV 和获得 WOAH 官方认可方面取得进展 • 自由国家和地区:保持并提高其地位
摘要:通过将多个微电网 (MG) 互连并形成多微电网 (MMG) 系统,可以缓解单个微电网 (MG) 的若干问题,例如电压和频率波动,这些问题主要由于可再生能源 (RES) 发电的间歇性而引起。MMG 系统可提高电力系统的可靠性和弹性,提高 RES 的利用率,并为消费者提供具有成本效益的电力。本文全面回顾了 MMG 领域的研究,总结了文献中提出的不同运营目标和约束,以实现 MMG 的高效运行。此外,还讨论了可以将 MG 互连以形成 MMG 系统的不同 MMG 架构及其特性。本文还对集中式、分散式、分布式和分层结构中 MMG 的运行和控制的不同控制策略和运营管理方法进行了最新回顾。还介绍了 MMG 系统中不同不确定性来源的分类以及提出的不确定性处理策略。最后,本文补充讨论了MMG系统的主要开放问题和未来研究方向。
Table 1: Key results areas for the National Cancer Control Strategy 2023-2027...............................................9 Table 2: Structure of the National Cancer Control Strategy 2017-2022..............................................................11 Table 3: Implementation status for the National Cancer Control Strategy 2017-2022, at end-term.11 Table 4: SWOT分析............................................................................................................................................................................................................................................................................................................................................................... control.................................................................................................................................................14 Table 7: Comparison of the principle, setting and scope of action between population-based cancer registries (PBCRs) and hospital-based cancer registries (HBCRs)........................................17 Table 8: Roles and responsibilities .............................................................................................................................................36 Table 9: Examples of cost-effective cancer interventions for Kenya.....................................................................38 Table 10: Total National Cancer Control Strategy Implementation Costs (KES)................................................40 Table 11: Breakdown of Total Direct Clinical Costs (KES).................................................................................................40 Table 12: Breakdown of Total Programme Costs (KES)......................................................................................................41 Table 13: Key indicators per支柱......................................................................................................................................................................................................................................................................................................................................................................................... 44表14:人力资源要求...............................................................................................................................................................................................
使用量子特征进行参数估计的量子计量学最近引起了人们的注意,因为它可以胜过任何基于资源的经典测量方案[1-8]。尽管可以实现令人印象深刻的精确提高,但只有在优化协议的各个步骤时才能达到最终性能[4,9,10]。标准过程通常考虑最初以最佳初始状态制备的系统的自由演变。但是,在许多示例中,这种方法还不够,并且必须通过外部控制修改系统动力学,以实现给定实验约束的最高精度。控制设计通常由最佳控制理论(OCT)执行,该理论证明了其在许多量子应用中的有效性[6,11-14]。到目前为止,已经提出了不同的解决方案,以定义最佳控制问题。它们在固定的最后时间示意性地差异以最大化(或最小化)。除其他外,我们可以提到量子渔民信息(QFI)[10,15–30],选择性控制方案[31-39]和指纹识别方法[40-43]的最大化。QFI基于与量子系统结合的cram'er-rao的概括[9,44,45]。对于纯状态,QFI与特定可观察的特定可观察的方差成正比,该方差与哈密顿量的部分衍生物相对于参数进行估计。通过最大化此数量,我们确保参数的小扰动会引起对系统动力学的显着修改,因此,这使我们能够减少测量过程中造成的误差。对于QFI,该信息在参数空间中是本地的,并且在控制问题的定义中没有明确的目标量子状态。本质上非本地的选择性控制过程并非如此。可以将它们视为以不同参数值为特征的系统的不同副本的同时状态对状态控制协议[33,34,36,46-46-50]。选择性控制已广泛用于核磁共振中[51-55]。在此框架中,目标是找到一个控制系统的控件,以达到系统的每个副本,以达到(可能尽可能快)的目标状态,并专门选择目标状态以最大程度地减少测量误差。指纹方法更加详尽,并结合了来自QFI和选择性协议的想法[40-43]。没有特定的目标状态,但目标是最大化一个或几个可观察到的时间演变之间的距离。在这种情况下,考虑了整个动态,而不仅仅是最终系统配置[43]。除了给定优点的最大化外,还可以包括其他约束来分析这些问题,例如控制时间或能量的最小化[56-59]。可以通过这些方法独立地获得不同的控制策略,例如,用于自旋系统的参数估计。自然出现的一个问题是在哪些条件下这些控制方案是等效的,更一般而言,不同技术之间的优点,相似性和差异。本文旨在朝这个方向迈出一步。据我们所知,只有指纹方法已短暂地连接到[60,61]中的Fisher信息,但是QFI和选择性方案之间的关系仍未得到探索。为了简化分析,我们专注于链接
联邦决策者正在追求昂贵的气候控制和排放政策,这些政策在欧洲大为失败,而美国农场和家庭将被要求为其付款。特朗普总统从意识形态的巴黎气候协议中撤回了美国的负担,美国为减少碳排放量减少了负担,理论上旨在达到无法达到无法达到的排放目标。总统拜登(Biden)在任职的第一天重新加入了协议,从那以后,他的政府通过法规和立法追求了“净零”碳排放的怪异目标。在将美国推荐给零净气候控制议程后,总统和国会通过降低通货膨胀法案恢复了曾经被运输的“绿色新交易”的重大误导性特征。然后,拜登政府使用行政权来限制石油和天然气供应,使化学原料购买和生产更昂贵,并邀请证券交易委员会要求新的“环境,社会,治理”或ESG报告以跟踪从农场到桌子的碳发射。这些联邦倡议和要求将在这里证明昂贵且经济上的破坏性,就像它们在欧洲一样。为了更好地欣赏美国农场和家庭可能会为拜登政府的净零政策和目标支付的真正成本,七叶树学院的经济研究中心开发了一个模型玉米农场,必须由政府的新碳排放规则发挥作用。如预期的那样,农场的运营成本都大大增加。,丙烷与谷物干燥机和加热谷仓所需的一样。卡车,拖拉机和联合收割机所需的柴油燃料变得更加昂贵。和氮肥的价格也需要上升。然后,经济模式追溯了这些额外的运营成本如何影响美国消费者的食品价格。再次上涨,以补偿农民的政府行动。结果是可预测的,毫不奇怪,但是许多美国决策者似乎不愿解决甚至承认它们。必须改变,否则美国将面临可怕的经济后果。
摘要:近年来,电力系统已从传统发电厂转向可再生能源 (RES) 整合。这一趋势正在许多发展中经济体中形成,包括西非电力联盟 (WAPP)。然而,由于底层可再生能源的多变性和间歇性,RES 的整合强调了电网的安全性和稳定性。电池储能系统 (BESS) 被认为是解决 WAPP 互联输电系统 (WAP-PITS) 中频率控制挑战的一种可能解决方案,有助于适应高水平的 RES。本文分析了 BESS 在 WAPPITS 中提供主要频率控制储备的应用和有效性。分析基于使用基于 WAPPITS 历史频率测量的开环模型进行的数值模拟。简化模型提供了 BESS 装置频率控制和充电状态 (SOC) 恢复逻辑的一阶分析。本研究表明,基于下垂的控制策略仅能对网络中对称和快速的频率振荡作出反应,可能适合调节系统中的 BESS。此外,它还表明,仅部署 BESS 并不能解决频率控制问题,需要对频率控制服务进行深入修订,主要涉及传统发电厂。
▶交易成本是根据整体交易量和交易规模凸的函数建模的。▶长期记忆(LSTM)神经网络可解决优化,以最大程度地减少执行大订单时累积的总交易成本。▶行业标准标准的指标,例如时间加权平均价格(TWAP)和体积加权平均价格(VWAP),以评估该策略。▶在交易日的过程中清算单个股票的较高位置的例子。
作为一种新兴的能源管理技术,DC纳米网格坐标可通过需求侧管理可再生能源输出,这将为派遣具有较高可靠性和效率的智能建筑和社区提供更多选择和灵活性。在这种情况下,本文分析了直流纳米网格的结构和组成部分。本文回顾了DC纳米网格中的角色和组成部分。然后,近年来从两个方面研究了DC纳米电网的关键控制技术:本地控制和协调控制,其中包含控制方案,例如电压/当前控制技术,电力共享技术和合作控制技术。比较了不同级别的不同控制策略,并分析了它们的应用程序,优势和缺点。当前的研究进度和挑战在本文末尾进行了总结。
•相互愿意为伙伴关系投入时间和精力。•明确彼此之间的期望,目标和关系标准。•对相互保密,问责制和会议时间的使用达成一致。•在关系的早期找到联系点和共同基础。•一年至少四次面对面,并进行非正式的会议和相遇。•意识到讨论的内容会有所不同,而指导者不会成为每个领域的专家。•导师需要了解系统和社区中可用的支持。•合伙企业中的每个成员都必须认识到自己的局限性和界限。•导师必须知道何时最好地向其他专业人员提及超越知识和经验的事项,无论是在个人还是专业领域,例如咨询辅导员,教练,老师。•两个参与者都应该尽早结束关系,如果这都不适合这一关系。•这种关系可能过去几年;提出了两年的承诺。•封闭应包括时间来思考关系的成功,受训者成就以及如何重新定义关系并继续前进。