新的疲劳寿命预测框架可在统计和频谱相似的不规则变幅载荷下为缺口梁模型提供更好的寿命预测。它通过修改应力-振幅历史的概率密度函数,使累积损伤规则能够解释载荷序列效应,方法是 (1) 基于雨流计数算法识别过载;(2) 分析表征过载延迟效应;(3) 使用过载振幅率表征校正损伤规则。将根据实验获取和合成生成的载荷时间历史估计的疲劳寿命与根据定性再现物理实验中疲劳寿命的模拟生成的疲劳寿命进行比较。预测精度的显著提高优于 Palmgren-Miner 规则和基于功率谱的寿命估计。对现场加速度数据的演示应用证实了其可用于在役结构健康监测和损伤预测。该框架不需要预先了解所施加的负载,并且可以应用于具有已知结构和缺陷特性的其他工程结构。
隧道场效应晶体管 (TFET) 被认为是未来低功耗高速逻辑应用中最有前途的器件之一,它将取代传统的金属氧化物半导体场效应晶体管 (MOSFET)。这是因为随着 MOSFET 尺寸逐年减小,以实现更快的速度和更低的功耗,并且目前正朝着纳米领域迈进,这导致 MOSFET 的性能受到限制。在缩小 MOSFET 尺寸的同时,面临着漏电流增加、短沟道效应 (SCE) 和器件制造复杂性等几个瓶颈。因此,基于隧道现象原理工作的 TFET 已被提议作为替代 MOSFET 的器件之一,后者基于热电子发射原理工作,将器件的亚阈值摆幅限制在 60mV/十倍。 TFET 具有多种特性,例如不受大多数短沟道效应影响、更低的漏电流、低于 60mV/dec 的更低亚阈值摆幅、更低的阈值电压和更高的关断电流与导通电流之比。然而,TFET 也存在一些缺点,例如掺杂 TFET 的制造工艺复杂,会导致各种缺陷。这些问题可以通过使用无掺杂技术来克服。该技术有助于生产缺陷更少、更经济的设备。另一个缺点是 TFET 表现出较低的导通电流。异质材料 TFET 可用于解决低离子问题。为了更好地控制异质材料 TFET 沟道,提出了双栅极。亚阈值摆幅 (SS) 是决定器件性能的重要参数之一。通过降低 SS,器件性能将在更低的漏电流、更好的离子/关断比和更低的能量方面更好。这个项目有 3 个目标:建模和模拟异质材料双栅极无掺杂 TFET (HTDGDL- TFET)。比较 Ge、Si 和 GaAs 作为源区材料的 TFET 性能。将 HTDGDL-TFET 用作数字反相器。将使用 Silvaco TCAD 工具进行模拟。已成功建模单栅极和双栅极 HTDL-TFET。已为该项目进行了 4 个模拟测试用例,以选择所提 TFET 的最佳结构。使用 Vth、SS、Ion、Ioff 和 Ion/Ioff 比等几个重要参数来测量 TFET 的性能。在所有 4 个测试用例中,最佳 TFET 结构以 Ge 为源区材料,源区和漏区载流子浓度为 1 × 10 19 𝑐𝑚 −3,沟道载流子浓度为 1 × 10 17 𝑐𝑚 −3,且无掺杂。这是因为器件的 Vth 值为 0.97V,SS 值为 15mV/dec,Ion/Ioff 比为 7 × 10 11 。设计的 TFET 反相器的传播延迟比 [21] 中的反相器短 75 倍,比市场反相器 [SN74AUC1G14DBVR] 短 29 倍。本文还提出了一些未来的工作。
摘要 � iii 致谢 � iv 目录 � 图表 � vi 表格表 � vii 1 � 介绍 � 1 1.1 � 概述 � 1 1.2 研究背景 � 2 1.3 研究目标 � 5 1.4 研究方法 � 6 2 � 文献综述 � 8 2.1 � 增升装置基础知识 � 8 2.2 常规后缘增升装置 � 10 2.3 后缘增升装置的机构类型 � 16 2.4 摆臂机构在增升装置中的应用 � 21 3 机构设计 � 26 3.1 机翼平面形状参数 � 26 3.2 襟翼翼型设计 � 26 3.3 摆臂襟翼机构原理 � 27 3.4 部件初始尺寸 � 32 3.5 改进程序和最终设计 � 36 3.6 襟翼载荷计算 � 44 3.7 机械应力分析 � 46 3.8 作动系统布置 � 47 3.9 讨论 � 51 3.10 � 机构设计总结 � 54 4 质量比较 � 55 4.1 传统襟翼机构的质量估算 � 55 4.2 摆臂机构的质量 � 56 4.3 比较结果 � 57 5 � 结论和未来工作 � 59 5.1 � 结论 � 59 5.2 未来工作 � 60 6 参考文献 � 62 7 参考书目 � 64 附录 A � 65 附录 B � 91 附录 C � 109 附录 K � 119
灵活的《卫报》系列是一个“插头和播放”预装电池系统,考虑到符合AS5139安装要求和清洁能源委员会的“最佳实践指南”的牢记的太阳能安装程序。它支持一系列逆变器/充电器平台,可以为“ AC耦合”和“ DC耦合”太阳能安装配置,使其成为极其灵活的平台。
如今可以直接访问传感器数据的应用程序,用于用于高中和大学生的实践教学练习。振荡运动是物理学的基石,许多论文都发表了使用智能手机来访问古典实验1或提出创新的习惯实践。2,3个简单摆4-6或复合摆7的不同配置已被赋予。其他研究涉及水平振荡质量8,9以及可能的耦合系统。8,10的信息,但是可以使用其他传感器,例如磁场,12,13光强度9,14和旋转15。此外,某些应用程序允许进行合并的磁盘和加速度记录,从而进行了有趣的研究。15最后,还使用了其他开放平台,例如Arduino 7或视频录制16。最近出现在本期刊上的有关移动设备和物理教学传感器的详尽资源信函。17
这项工作是根据创意共享归因 - noncmercial- noderivatives 4.0国际许可证(http://creativecommons.org/licenses/by-nc-nc-nd/4.0/)的许可。您可以将材料复制并重新分配到任何媒介或限制中,提供适当的信用,链接到许可证并指示您所做的更改。您可以以任何合理的方式这样做,但不要以任何建议许可人认可您或您的使用。您不得将材料用于商业文件。如果您在材料上进行混音,转换或构建,则不得分发修改后的材料。本论文中的图像或其他第三方材料包含在本书的创意共享许可中,除非在材料的信用额度中另有说明。如果本书的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。使用一般描述性名称,注册名称,商标,服务标记等。在本出版物中,即使没有具体的说法没有相关的保护法律和法规,因此也没有暗示。
摘要 — 本文介绍了一项关于 28 nm FD-SOI MOSFET 参数提取和分析的分析性实验研究,温度范围从室温到 25 K,栅极长度从微米到纳米。结果表明,FD-SOI 器件随温度变化的行为可以通过深低温条件下已建立的物理理论可靠地描述:玻尔兹曼统计和声子散射机制是决定器件电行为的两个主要因素。此外,我们还展示了 Y 函数作为一种参数提取方法的优势,适用于不同的通道长度和宽的温度范围。我们展示了阈值电压、亚阈值摆幅、低场迁移率和源漏串联电阻对温度的依赖性,以及栅极长度减小如何影响这些特性。
ICL7103A/ICL8052A A/D 转换器的基本电路保持不变。但是,需要进行一些修改以适应 100mV 参考。首先,修改参考电压分压器网络 (5.1k、1k) 以获得更高的分辨率。其次,将积分器电阻减小到 10k ,以便在 V IN = 200mV 时实现大约 8V 的积分器摆幅。第三,应使用 300k 电位器替换比较器转换网络中的 300k 固定电阻。当 V IN = 0V 时,应调整此电位器,直到显示屏读取相等间隔的正负符号。在自动归零期间,此网络将比较器输出提升至 ICL7103A 逻辑的阈值。连接在积分器电容上的两个 JFET 在严重超量程情况下保持积分器和自动归零电容的完整性。
分子方法实现电化学可切换单层 MoS 2 晶体管 Yuda Zhao、Simone Bertolazzi、Maria Serena Maglione、Concepció Rovira、Marta Mas- Torrent、Paolo Samorì* Yuda Zhao 博士、Simone Bertolazzi 博士、Paolo Samorì 教授 斯特拉斯堡大学,CNRS,ISIS UMR 7006,8 allée Gaspard Monge,F-67000 Strasbourg,法国 电子邮件:samori@unistra.fr Maria Serena Maglione 博士、Concepció Rovira 教授、Marta Mas-Torrent 教授 巴塞罗那材料科学研究所 (ICMAB-CSIC) 和生物工程生物材料与纳米医学网络研究中心 (CIBER-BBN),UAB 校园,08193 Bellaterra,西班牙 关键词:2D 半导体、分子开关、电化学可切换晶体管,功能器件,亚阈值摆幅
除了在航天工业、天文学和高精度计量 [1] 中的众所周知的应用外,在低温下运行的先进 CMOS 技术是实现大规模量子计算 [2]– [4] 和提高数据中心计算性能的下一个关键步骤之一。虽然后一种应用可能主要限于 77 K(LN2)的温度范围,但大部分集成量子比特控制系统将在液氦温度(4 K)(LNA、RF 振荡器等)下运行,甚至可以根据特定量子比特技术的功率和噪声限制在 mK 范围内运行。因此,经典 CMOS 逻辑与量子比特的紧密集成不仅有助于缓解布线限制,而且还能减少读写操作期间的信号失真。关于先进 CMOS 技术的最新出版物主要关注低温下改进的器件特性(亚阈值摆幅、导通电流、泄漏等)[5]–[7]。由于测量限制,例如低温恒温器中可用的探头数量(通常最多