电离辐射计量中心摘要。放射性核素中子源为各种中子测量装置提供了一种产生标准中子校准场的便捷方法。需要知道源的以下属性才能表征某一点的场:总中子发射率、中子能谱以及发射强度随角度的变化。假设光谱随角度的变化对于大多数应用而言可以忽略不计。放射性核素中子源的总发射率可以在国家物理实验室 (NPL) 通过硫酸锰浴技术绝对测量,或通过慢化探测器进行比较测量。各种常用源的中子能谱可在公开文献中找到。本报告描述了 NPL 用于测量放射性核素中子源各向异性发射的方法。给出了相对于各种源类型和封装的圆柱轴的测量中子角分布。还给出了使用蒙特卡洛传输代码 MCNP 计算的分布,这些分布通常与测量的分布具有良好的一致性。
尽管在过去几十年中取得了巨大进步,但治疗失败仍然是抗癌疗法的重大负担。肿瘤细胞倾向于通过克隆进化和抗性亚克隆的选择来逃避化疗,从而导致治疗复发。下一代测序旨在找到耐药性癌细胞串扰中有希望的候选变异。这种方法可能进一步有助于分子肿瘤板适应每个患者的靶向治疗方案(1)。髓增生性综合征慢性髓样白血病(CML)成为有效且成功的靶向治疗的榜样。cml是一种罕见的肿瘤,主要是由相互易位t(9; 22)(q34; q11)引起的,导致BCR :: ABL1融合基因的形成(2)。在许多情况下,它通过酪氨酸激酶抑制剂(TKI)成功治疗,尤其是与BCR :: ABL1激酶结合的2-苯基氨基嘧啶伊替尼,从而预防了下游靶标的磷酸化(3)。尽管总体10年生存率为83%,但在治疗的五年内,所有患者中有20%至25%遭受治疗衰竭(4,5)。第二代和第三代TKI,即尼洛替尼,达沙替尼,鲍苏替尼和庞替尼,开发了以可变成功的变化(6,7)克服这种抗药性(6,7)。TKI抗性发生在依赖性或独立于BCR :: ABL1激酶改变。第一个提及的主要是由BCR :: abl1中的突变引起的,例如ABL1 p。(Tyr253His),p。(GLU255VAL)或p。(THR315ile))防止TKIS与BCR或BCR expristion TKIS结合,以防止TKIS与BCR :: ABCR1 anbl1 anbl1 and anbl1 and anbl1fination and Overection(8)。对于BCR :: ABL1-独立抵抗力,讨论了几种机制,例如,药物过表达EF ef lox top子转运蛋白,尤其是ATP结合盒(ABC)转运蛋白转运蛋白家族成员P-糖蛋白(P-GP,P-GP,ABCB1)或乳腺癌抗癌蛋白(BCRP,ABCG2)的传播(abcg2)的demaption(p-gp,abcb1),abcg2 abcg2 ryaption(abcg2)。 10)。此外,显示遗传像差,例如第8条或影响RUNT相关转录因子1(RUNX1)的突变,显示出患者中爆炸危机或抗TKI耐药性克隆的进展(11,12)。除了临床研究外,体外模型还可以详细研究耐药性的机理。这样的模型是关键工具,因为这些模型从这些模型中得出的发现被成功地转化为诊所,例如预测药物效率并改善治疗方案(13)。可以通过暴露于缓慢增加抗癌药物浓度或通过脉冲治疗来获得肿瘤细胞系的耐药性。 在这里,我们使用外显子组测序在体外模型中研究TKI抗性CML中的遗传变异。 为此,我们建立了伊马替尼和尼洛替尼抵抗的生物学重复。 我们报告了伊马替尼和尼洛替尼抗性发展中演变的序列变体。 此外,我们研究了候选变体PTPN11 p。(Tyr279Cys),PDGFRB p。(GLU578GLN)和NRAS p。(GLN61LYS)对TKI治疗的反应的影响。可以通过暴露于缓慢增加抗癌药物浓度或通过脉冲治疗来获得肿瘤细胞系的耐药性。在这里,我们使用外显子组测序在体外模型中研究TKI抗性CML中的遗传变异。为此,我们建立了伊马替尼和尼洛替尼抵抗的生物学重复。我们报告了伊马替尼和尼洛替尼抗性发展中演变的序列变体。此外,我们研究了候选变体PTPN11 p。(Tyr279Cys),PDGFRB p。(GLU578GLN)和NRAS p。(GLN61LYS)对TKI治疗的反应的影响。
在天然档案中应用10的先决条件进行太阳能和地磁重建,就是要知道如何将10归因于沉积反映大气生产的变化。但是,这种关系仍在争论中。为了解决这个问题,我们使用了两种最新的全球模型Geos-Chem和eCham6.3-Ham2.3与最新的铍生产模型。在太阳调制过程中,这两个模型都表明10个沉积与全球产量变化成正比,纬度沉积偏见(<5%)。然而,与全球生产变化相比,在地磁调制过程中,热带和极地区域的10个沉积变化在热带地区和极地区域的衰减量增长了约15%,在亚热带和极地区域的变化增加了20%-35%。这种变化在半球上也是不对称的,归因于半球之间的不对称产生。对于公元774/5的极端太阳能质子事件,极性区域的沉积增加比热带地区高15%。本研究强调了从不同位置或独立地磁场记录进行比较时,大气混合的重要性。
与正在进行的I期试验(NCT03784625)相符的摘要,该试验专门针对黑色素瘤靶向放射性核素治疗(TRT),我们探索了免疫系统与黑色素配体[131 I] ICF01012单独或与免疫治疗疗法合并的相互作用(ICF01012)。在这里我们证明[131 I] ICF01012诱导免疫原性死亡,其特征是细胞表面暴露的膜联蛋白A1和钙网蛋白的显着增加。与免疫功能低下相比,[131 I] ICF01012增加了免疫能力小鼠的存活率(29 vs. 24天,p = 0.0374)。流式细胞仪和RT-QPCR分析强调[131 I] ICF01012诱导肿瘤微环境中的适应性和先天免疫细胞募集。[131 I] ICF01012与ICI(抗CTLA-4,抗PD-1,抗PD-L1)的组合表明,公差是一种主要的免疫逃逸机制,而TRT后不存在疲劳。此外,与单独使用TRT相比,[131 I] ICF01012和ICI组合有系统地导致生存率延长(P <0.0001)。具体而言,[131 I] ICF01012 +抗CTLA-4组合与单独的抗CTLA-4相比显着提高生存率(41 vs. 26天; P = 0.0011),而没有毒性。这项工作代表了TRT诱导的抗肿瘤免疫反应修饰的首个全局表征,表明耐受性是一种主要的免疫逃逸机制,而将TRT和ICI结合在一起是有希望的。
摘要:靶向放射性核素疗法作为一种核医学的亚科越来越突出。数十年来,用放射性核素的治疗主要仅限于在甲状腺疾病中使用碘-131。当前,正在开发由放射性核素组成的放射性药物,该放射性核素与载体结合了与所需的具有高特异性生物学靶的载体。目标是在肿瘤水平上尽可能选择性,同时限制在健康组织水平上接受的剂量。近年来,对癌症的分子机制以及创新靶向剂(抗体,肽和小分子)的外观以及新的放射性病的可用性,在矢量化的内部辐射方面具有相当大的进步,并具有更大的进步,并具有更好的治疗性治疗性的治疗性和延伸性的散发性和散发性的散发性,并具有个性化的安全性,并具有个性化的安全性,并具有个性化的安全性,并具有更高的性能。例如,针对肿瘤微环境而不是癌细胞,现在似乎特别有吸引力。几种用于治疗靶向的放射性药物已显示出几种类型的肿瘤的临床价值,并已或将很快被批准并授权用于临床使用。在他们的临床和商业成功之后,该领域的研究尤其不断增长,临床管道似乎是一个有希望的目标。本综述旨在概述有关靶向放射性核素治疗的当前研究。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2024 年 8 月 6 日发布。;https://doi.org/10.1101/2024.08.02.606075 doi:bioRxiv preprint
外束放射治疗 (EBRT) 使用外部来源的准直 X 射线或伽马射线、电子或质子发射到受影响区域。2 最近的迭代被称为重离子疗法,使用重离子代替电子或质子进行治疗。3,4 这种方法的优点是不需要手术,这可能会使患者的健康复杂化。此外,随着机器的进步,可以非常准确地识别目标细胞,从而可以更准确地输送剂量。另一方面,近距离放射治疗使用放射性物质并将其植入目标细胞附近的密封容器中。该程序适用于特定癌症,例如乳腺癌或前列腺癌,在这些癌症中,将更高剂量应用于集中区域是有利的。这两种治疗方法可以结合起来:通过使用 EBRT 瞄准大癌症肿块,近距离放射治疗将剂量输送到较小的癌症区域,可以提高整体治疗的有效性。内部治疗的另一种形式是放射性核素治疗或非密封源放射治疗。它使用化学和生物化合物与癌细胞结合或利用人体将其吸收到体内的倾向,因此是一种靶向放射治疗。早期的例子是使用放射性碘(131 I)治疗甲状腺癌。5 由于甲状腺会自然吸收碘进行自我调节,因此当摄入 131 I 时,甲状腺会吸收放射性碘,治疗就会顺利进行。
摘要:锝-99( 99 Tc)主要以高锝酸盐( 99 TcO 4 − )形式存在,是人工核裂变产生的核废料中一种难以处理的污染物。从核废料和受污染地下水中选择性去除 99 TcO 4 − 非常复杂,因为(i)高放射性废液的酸性和复杂性;(ii)低活度储罐废物(例如汉福德的储罐废物)和萨凡纳河等地的高放射性废物的碱性环境;和(iii) 99 TcO 4 − 可能会泄漏到地下水中,由于其高流动性,有造成严重水污染的风险。本综述重点介绍先进多孔材料的最新发展,包括金属有机骨架(MOF)、共价有机骨架(COF)及其无定形对应物多孔有机聚合物(POP)。这些材料在吸附 99 TcO 4 − 和类似的氧阴离子方面表现出卓越的效果。我们全面回顾了这些阴离子与吸附剂的吸附机理,采用了宏观批量/柱实验、微观光谱分析和理论计算。最后,我们提出了对未来潜在研究方向的看法,旨在克服当前的挑战并探索该领域的新机遇。我们的目标是鼓励进一步研究开发先进的多孔材料,以有效地管理 99 TcO 4 −。关键词:核废料处理、99 TcO 4 − 去除、金属 − 有机骨架、共价有机骨架、有机聚合物■ 介绍
摘要:在这项工作中,准备一种新型的聚多巴胺/还原的石墨烯(PDA/RGO)纳米滤膜,以在碱环境下有效且稳定地去除放射性斜质离子。通过掺入PDA和热还原处理,不仅可以适当调节氧化石墨烯(GO)纳米片的间间距,而且还达到了改进的抗流变特性。GO的剂量,与PDA的反应时间,PDA与GO的质量比以及热处理温度已被优化,以实现高性能PDA/RGO膜。所得的PDA/RGO复合膜在pH 11时表现出极好的长期稳定性,并保持稳定的腹膜抑制超过90%。此外,PDA/RGO膜的分离机制已被系统地研究,并确定为电荷排斥和大小排除的协同作用。结果表明,PDA/RGO可以被视为将SR 2+离子与核工业废水分离的有前途的候选人。