摘要:在 PubMed 中搜索显示,有 72 种放射性核素已被考虑用于分子或功能靶向放射性核素治疗。随着放射性核素疗法的数量和变化不断增加,了解放射性核素的作用以及可能使其有用或无用的各种特性非常重要。本综述重点介绍与放射性核素治疗相关的放射性核素的物理特性,例如线性能量转移、相对生物效应、射程、半衰期、成像特性和辐射防护考虑。所有这些特性在放射性核素之间差异很大,可以针对特定目标进行优化。对某些应用有利的特性有时对其他应用来说可能是缺点;例如,易于成像的放射性核素可能比其他放射性核素带来更多的辐射防护问题。同样,较长的辐射范围对具有异质吸收的目标有益,但也会增加对目标周围组织的辐射剂量,因此,较短的射程可能对均匀吸收更有利。由于每种放射性核素都有一组不可改变的特征,因此人们无法选择一组特征,但所有 72 种用于治疗的放射性核素(以及许多尚未研究的放射性核素)都提供了许多可供选择的集合。
目前可用于治疗转移性、进展性放射性碘 (RAI) 难治性分化型甲状腺癌 (DTC) 和髓样甲状腺癌 (MTC) 的治疗方案有限。虽然有几种全身靶向疗法(如酪氨酸激酶抑制剂)正在评估和实施用于治疗这些癌症,但这些疗法与严重的、有时甚至危及生命的不良事件有关。肽受体放射性核素治疗 (PRRT) 有可能成为治疗生长抑素受体 (SSTR)+ RAI 难治性 DTC 和 MTC 患者的有效且安全的方式。MTC 和某些 RAI 难治性 DTC 亚型(如对常规治疗方式反应较差的 Hürthle 细胞癌)已证明对 PRRT 治疗有良好的反应。虽然目前的文献为 PRRT 在甲状腺癌中的应用带来了希望,但该领域的几个方面仍有待进一步研究,尤其是与其他系统性靶向疗法的直接比较。在这篇综述中,我们全面展望了当前使用各种 PRRT 的转化和临床数据,包括生长抑素类似物的诊断效用、PRRT 的治疗诊断特性以及未来研究的潜在领域。
广义上讲,癌症治疗包括五大治疗方案,即手术、放疗、化疗、分子靶向治疗和免疫治疗(图 1)。前三大支柱是癌症治疗的基石。手术包括切除肿瘤块,以最终实现治愈或至少更好地控制疾病。然而,手术可能并不总能达到治愈目的,特别是在癌症扩散到重要器官或转移到身体远处的情况下。因此,其他两大支柱,即全身化疗(有或无外部放射治疗 (DXT))或通过近距离放射治疗进行内部放射治疗 (DXT))用于控制疾病。随着个性化医疗和混合成像时代的癌症治疗不断发展,分子靶向治疗、靶向放射性核素治疗 (TRT) 和免疫治疗已被引入作为抗癌武器的一部分。
放射性同位素成像是利用受试者体内示踪量的放射性核素发出的辐射对生理功能进行体内成像。从放射性核素的产生和衰变到结果图像的形成和分析,几乎每个步骤都涉及物理学。在本章中,我们讨论一些与核发射成像相关的基本物理学主题。在本章末尾给出的参考文献中可以找到更深入的讨论,尤其是 Rollo (1977) 以及 Sorenson 和 Phelps (1987)。由于后面的章节讨论了核发射成像中使用的辐射探测器(第 IV 部分)和成像系统(第 II、III 和 V 部分),因此我们不会在本章中详细介绍辐射探测器和成像系统仪器物理学的主题。
摘要:靶向放射性核素疗法作为一种核医学的亚科越来越突出。数十年来,用放射性核素的治疗主要仅限于在甲状腺疾病中使用碘-131。当前,正在开发由放射性核素组成的放射性药物,该放射性核素与载体结合了与所需的具有高特异性生物学靶的载体。目标是在肿瘤水平上尽可能选择性,同时限制在健康组织水平上接受的剂量。近年来,对癌症的分子机制以及创新靶向剂(抗体,肽和小分子)的外观以及新的放射性病的可用性,在矢量化的内部辐射方面具有相当大的进步,并具有更大的进步,并具有更好的治疗性治疗性的治疗性和延伸性的散发性和散发性的散发性,并具有个性化的安全性,并具有个性化的安全性,并具有个性化的安全性,并具有更高的性能。例如,针对肿瘤微环境而不是癌细胞,现在似乎特别有吸引力。几种用于治疗靶向的放射性药物已显示出几种类型的肿瘤的临床价值,并已或将很快被批准并授权用于临床使用。在他们的临床和商业成功之后,该领域的研究尤其不断增长,临床管道似乎是一个有希望的目标。本综述旨在概述有关靶向放射性核素治疗的当前研究。
越来越多的文献报道了肽受体放射性核素治疗 (PRRT) 与其他抗肿瘤治疗的联合使用,以期产生协同效应,但可能增加安全性问题。增强 PRRT 结果的联合治疗基于改善肿瘤灌注、上调生长抑素受体 (SSTR)、使用 DNA 损伤剂进行放射增敏或靶向治疗。目前有几项 1 期或 2 期试验正在招募联合治疗方案的患者。PRRT 与细胞毒性化疗、卡培他滨和替莫唑胺 (CAPTEM) 的联合使用似乎具有临床应用价值,尤其是在胰腺神经内分泌肿瘤 (pNET) 中,且安全性可接受。目前正在进行的临床试验正在测试术前新辅助 PRRT、静脉和动脉内应用途径的 PRRT 组合、PRRT 与不同放射性标记(α、β、Auger)SSTR 靶向激动剂和拮抗剂的组合、免疫检查点抑制剂 (ICI)、聚(ADP-核糖)聚合酶-1 (PARP1i)、酪氨酸激酶 (TKI)、DNA 依赖性蛋白激酶、核苷酸还原酶或 DNA 甲基转移酶 (DMNT)。在罕见的 NET(如副神经节瘤、嗜铬细胞瘤)中与 [ 131 I]I-MIBG 的组合以及新的非 SSTR 靶向放射性配体用于个性化治疗过程。本综述将概述正在进行的 PRRT 联合治疗的现状。
靶向放射性核素治疗在神经内分泌肿瘤治疗中发挥着越来越重要的作用。目前可用的治疗方法包括 Lu-177 DOTATATE(获批用于治疗晚期胃肠胰神经内分泌肿瘤 (GEP-NET))和 I-131 间碘苄胍 (MIBG)(获批用于治疗晚期嗜铬细胞瘤/副神经节瘤 ( 1 , 2 ))。Lu-177 DOTATATE 是一种肽受体放射性核素治疗 (PRRT),其靶向大多数分化良好的 NET 过度表达的生长抑素受体 (SSTR) 亚型。I-131 MIBG 依赖于去甲肾上腺素转运蛋白机制,该机制吸收来自神经嵴的组织中的胺,例如肾上腺髓质和交感神经系统 ( 3 )。肽受体放射性核素治疗 (PRRT) 是一种靶向全身治疗,利用放射性标记肽将细胞毒性辐射水平直接传送至过度表达特定受体的肿瘤 ( 4 )。这种靶向放射性药物的全身给药可将治疗剂量的辐射传送至特定疾病部位,同时最大限度地减少辐射对健康组织的影响。
免责声明:洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占、免版税的许可,可以出于美国政府目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。