摘要:确保滚动轴承的平稳运行需要精确的故障诊断。特别是,在不同的工作条件下识别故障类型在实践工程中具有重要意义。因此,我们提出了一种加固集合方法,用于在不同的工作条件下诊断滚动轴承断层。首先,设计了一个加固模型来选择最佳的基础学习者。分层随机抽样用于从原始训练数据中提取四个数据集。强化模型分别由这四个数据集培训,我们获得了四个最佳基础学习者。然后,稀疏的ANN被设计为集合模型,并且可以成功识别可变工作条件下的故障类型的增强学习模型。进行了广泛的实验,结果证明了所提出的方法比其他智能方法具有优越性,具有显着的实践工程益处。
为了有效解决人类所面临的日益复杂的问题,最新的发展趋势是应用大量不同类型的传感器来收集数据,以便建立基于深度学习和人工智能的有效解决方案[1-4]。这不仅对传感器产生了巨大的需求,提供了商业机会,也为传感器设备及其相关应用的开发带来了新的挑战[5,6]。这些将人工智能与传感器相结合的技术发展正被积极地应用于医疗保健、制造业、农业和渔业、交通运输、建筑、环境监测等各个应用领域。例如,在环境监测中,集成了深度学习和人工智能算法的传感器能够快速分析大量数据集,实时识别模式、异常和趋势[7,8]。以天气预报为例,人工智能驱动的传感器可以从卫星、气象站和无人机等各种来源收集数据,从而更精确地预测天气模式。通过深度学习模型,传感器可以动态调整和整合新数据,从而随着时间的推移提高其预测准确性。此外,在工业环境中,人工智能增强的传感器在优化制造运营方面发挥着至关重要的作用,可以监测设备健康状况、预测潜在故障并提前安排维护 [ 9 – 12 ]。这种方法减少了运营停机时间并提高了整体效率。在此背景下,“传感器和应用中的人工智能和深度学习”特刊收集了关于人工智能(特别是深度学习)和传感器技术在各个领域的新发展的高质量原创贡献,以及分享想法、设计、数据驱动的应用程序以及生产和部署经验和挑战。本期特刊征文主题包括制造、机械和半导体的应用和传感器;建筑、施工、楼宇、电子学习的智能应用和传感器;推荐系统;自动驾驶汽车、交通监控和运输的应用和传感器;物体识别、图像分类、物体检测、语音处理、人类行为分析;以及其他相关传感应用 [ 13 , 14 ]。
在浮动式海上风电 (FOW) 系泊系统中,组件或系统故障可能造成各种后果,从性能的相对微小变化一直到完全失去定位并损坏阵列内的其他装置。收入损失、中断和恢复和维修费用可能会损害众多利益相关者(开发商、制造商、运营商和最终用户)的业务和声誉。商业 FOW 农场中相邻平台与其他水上用户之间的潜在相互作用意味着系泊故障的风险及其影响必须最终在农场层面进行评估,例如,意外极限状态 (ALS) 下平台分离的要求。还存在超出可服务极限状态 (SLS) 的可能性,这会影响发电,而无需系泊系统完全故障。
图1.1:票价-DEC在现场机器人上运行。从上到下是机器人观测,整个场景和相应的异常得分。从左到右是从实际导航方案中提取的五个时间步骤,以说明我们的票价方法的工作方式。我们的机器人首先跟踪路径并避免在正常操作中人类。不幸的是,在避开人类之后,它变成了一个角落,由于走廊太窄而被墙壁堵住。我们的方法成功地将这种情况检测为潜在的导航故障,并执行以异常本地化信息为指导的知情恢复策略,并自动返回正常操作。
在本研究中,我们从汽车和轮胎厂收集了大量断裂接头螺栓,并对每个螺栓进行分析,以确定失效原因和螺栓上裂纹的起始位置。然后根据失效原因和位置对螺栓进行分组,以调查失效概率和失效位置概率。结果表明,低周和高周疲劳占螺栓失效的 70%,80% 的螺栓失效发生在螺栓螺纹区域的深处。只有在确定因低周疲劳而失效的样本中才会发现更靠近头部和杆部交叉处的失效位置。尽管如此,只有 40% 的低周疲劳导致的螺栓失效发生在靠近头部的位置,60% 的失效发生在远离头部的螺纹区域。本研究结果有助于预测螺栓的故障位置,从而有助于指导接头螺栓的预防性维护程序。
这项工作部分由欧盟通过欧洲社会基金 (FSE) 资助,该基金隶属于欧洲凝聚力和领土复苏援助 (REACT-EU) 倡议,属于 2014-2020 年国家研究和创新行动计划 (PON) 的范畴,根据 Decreto Ministeriale [部长法令 (DM)] 1062/2021 合同 57-I-999-6。Federico Castelletti 的工作部分由 UCSC (D1 和 2019-D.3.2 研究补助金) 资助;部分由 MUR-PRIN 补助金 2022 SMNNKY-CUP 资助,由欧盟-下一代欧盟资助,补助金 J53D23003870008。所表达的观点和意见仅代表作者本人,并不一定反映欧盟或欧盟委员会的观点和意见。欧盟和欧盟委员会均不对此负责。
当前的操作是关闭下部人字闸门,使水池平衡,并设置上部挡水板,以控制船闸室。操作将于 1 月 19 日至 21 日进行。工程和运营部门正在继续分析损坏程度,并正在采取其他行动来阻止水流并控制船闸。
系统配置选项的优化对于确定其性能和功能性至关重要,尤其是在自动驾驶软件(ADS)系统的情况下,因为它们具有多种此类选项。广告领域的研究工作优先考虑开发了拟议的测试方法,以增强自动驾驶汽车的安全性和安全性。目前,基于搜索的方法用于在虚拟环境中测试ADS系统,从而模拟了现实世界的情况。但是,这种方法依赖于优化自我汽车和障碍的航路点,以产生触发违规的各种情况,并且没有以前的技术专注于从配置的角度优化广告。为了应对这一挑战,我们提出了一个名为Conferve的框架,这是第一个自动配置测试框架。Confve的设计着重于通过不同配置下的不同广告测试方法产生的重新违规场景出现,利用9个测试Oracles使以前的广告测试方法可以找到更多类型的违规行为,而无需修改其设计或实施,而无需修改其新颖的技术,以识别出漏洞的违法行为违规和违反违法行为和违反违法行为。我们的评估结果表明,同盟可以发现1,818条独特的违规行为,并减少74.19%的重复违规行为。
1 Document Objective ................................................................................................................................. 4
• 对于单元大小/速度而言,时间步过大会导致模型不稳定 • 扩散波比浅水方程更宽容。但完整的圣维南方程更准确 • 使用 Courant 条件选择最佳时间步长。• 您使用的时间步长还取决于水文图上升的速度: • 快速上升 = 较低的时间步长/Courant 数 • 缓慢上升 = 较高的时间步长/Courant 数