摘要:番茄晚疫病(LB)的病原菌是致病疫霉菌,是一种毁灭性的疾病,严重影响植物的生产力。植物中易感基因(S)的存在促进了病原菌的增殖;因此,抑制这些基因可能有助于提供广谱和持久的耐受性/抗性。先前对拟南芥和番茄的研究表明,PMR4 易感基因的敲除突变体对白粉病具有耐受性。此外,马铃薯中 PMR4 的敲低已被证明可以赋予对 LB 的耐受性。为了在本研究中验证番茄中的相同效果,将含有四个单向导 RNA(sgRNA:sgRNA1、sgRNA6、sgRNA7 和 sgRNA8)的 CRISPR-Cas9 载体(靶向尽可能多的 SlPMR4 区域)通过农杆菌介导的转化引入两种广泛种植的意大利番茄品种:“San Marzano”(SM)和“Oxheart”(OX)。选择了 35 株植物(26 株 SM 和 9 株 OX)并进行筛选,以确定 CRISPR/Cas9 诱导的突变。不同的 sgRNA 导致的突变频率范围从 22.1% 到 100%,或者精确插入(sgRNA6)或缺失(sgRNA7、sgRNA1 和 sgRNA8)。值得注意的是,sgRNA7 在七种 SM 基因型中诱导了纯合状态下的 − 7 bp 缺失,而 sgRNA8 导致产生十五种具有双等位基因突变( − 7 bp 和 − 2 bp)的 SM 基因型。选定的编辑品系接种了 P. infestans,其中四种在 PMR4 基因座完全敲除的品系与对照植物相比表现出减轻的病害症状(易感性从 55% 降低到 80%)。使用 Illumina 全基因组测序对四种 SM 品系进行测序以进行更深入的表征,而未显示出候选脱靶区域发生任何突变的证据。我们的结果首次表明,pmr4 番茄突变体对致病疫霉菌的易感性降低,证实了 KO PMR4 在提供针对病原体的广谱保护中的作用。
在过去的十年中,由于开发了可以在一线或复发阶段使用的新疗法策略,因此对MM的处理已更改[1]。目前,六种不同的药物,即烷基剂,类固醇,蛋白酶体抑制剂,免疫调节剂,组蛋白脱乙酰基酶抑制剂和单克隆抗体用于不同的治疗方案,要么是双次,三倍,三胞胎,也可以将其结合到自动型茎细胞替代型(2)[2] [2]尽管有不同的治疗方案的可用性,但患者表现出良好的反应,某些情况显示复发。与接受化学治疗剂的患者相比,接受造血干细胞移植的患者观察到的生存率更好[3]。强烈需要为MM患者开发新的治疗方法以改善治疗结果。基因编辑最近在实验水平上尝试治疗包括血液恶性肿瘤在内的恶性疾病[4]。簇状的常规间隔短篇小学重复重复序列(CRISPR-CAS9)是细菌和相关生物的辅助免疫系统。CRISPR-CAS9由编程的单链引导RNA“ SGRNA”和Cas9核酸内切酶组成,该核酸酶在序列特异性位点生成双链DNA断裂(DSB)[5]。基因组的修饰是通过不同的方法进行的,例如:通过非同源末端连接(NHEJ)或同源性修复(HDR)路径的插入或缺失小序列“ indels” [5-7]。蛋白质由位于Chr22:22上的VPREB1基因编码。2016年,在中国推出了使用CRISPR-Cas9介导的基因编辑的首次临床试验。评估了编程的细胞死亡蛋白1(PD-1)基因敲除工程T细胞,以管理转移性非小细胞肺癌[8-10]。CRISPR/CAS9已被测试为多种血液疾病的潜在治疗,包括编辑β-丘脑中贫血中的β-珠蛋白(HBB)基因突变[11]和镰状细胞疾病中GLU6VAL突变的有效控制[12,13]。此外,通过编辑患者衍生成纤维细胞[14]的点突变[14]和出血疾病,例如新生儿自身免疫性血小板减少症和后液压减少症和后传播puransfula [15],血液磷[16],疾病[16],von-wille brandbrandbrandbrandbrandbrand [17],将这项技术用于治疗范科尼贫血。V-stet前B细胞替代光链1“ VPREB1”(也称为CD179A)蛋白质属于免疫球蛋白(IG)超家族,其分子量为16-18 kDa,由126个氨基酸组成。它在早期B细胞的表面表达,即概率和早期preb细胞[18]。该基因编码与IG-MU链相关的IOTA多肽链,以在Pre-B细胞表面形成分子复合物[19]。在B细胞分化的早期步骤中,VPREB1 /IG-MU链复合物调节Ig基因重排[20]。CD179A的结构包括一个类似IGV结构域的结构,该结构缺少正常V结构域的β(beta 7),但具有与其他蛋白质相顺序连续性的羧基末端[20]。在这个复合物中,CD179A的不完整V域CD179B与“ Lambda 5”结合使用,该“ Lambda 5”具有类似IgC域的结构,称为易于轻链的结构,称为替代轻链或伪轻链[21]。
摘要 数百种人类基因与神经系统疾病有关,但将其转化为可处理的生物机制却滞后。斑马鱼幼体是研究神经系统疾病遗传贡献的有吸引力的模型。然而,目前的 CRISPR-Cas9 方法难以应用于研究行为表型的大规模遗传筛选。为了促进快速遗传筛选,我们开发了一种简单的无测序工具来验证 gRNA,并开发了一种高效的 CRISPR-Cas9 方法,能够将 90% 以上的注射胚胎直接转化为 F0 双等位基因敲除。我们证明 F0 敲除可靠地重现复杂的突变表型,例如改变的昼夜节律分子节律、对刺激物的逃避反应以及多参数昼夜运动行为。该技术足够强大,可以敲除同一动物中的多个基因,例如创建用于成像的透明三重敲除水晶鱼。我们的F0敲除方法将斑马鱼从基因到行为表型的实验时间从数月缩短至一周。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年8月1日发布。 https://doi.org/10.1101/2024.08.01.606235 doi:biorxiv preprint
接下来,使用LCC-190细胞进行CRISPR/CAS9的整个基因组敲除筛选,以鉴定与抗RET抑制剂抗性相关的基因。将LCC-190细胞与大约120,000个SGRNA文库(包含3-6个SGRNA敲除一个基因)一起引入,用RET抑制剂处理了大约9天,然后检查了幸存细胞中包含的SGRNA。结果强烈表明,ERRFI1(MIG6)基因的敲除参与RET抑制剂耐药性(图2)。为了验证这一结果,使用LC2/AD和LCC-190细胞用具有不同序列的其他SGRNA敲除Mig6。结果表明,在Mig6基因敲除细胞中,EGFR途径过度活化,诱导耐药性。 EGF以1 ng/ml的浓度共同治疗,与人类的血液浓度相当
“基因敲除”或“敲除”是一种使基因功能失活的突变。这些突变对于经典的遗传研究以及包括功能基因组学在内的现代技术非常有用。过去,细菌基因的敲除通常是通过转座子诱变做出的。在这种情况下,需要费力的屏幕才能找到感兴趣的基因的淘汰赛。传统上,首先使用体外基因工程来修改质粒或细菌性人工染色体(BAC)的基因,然后将这些修饰的构建体移至细胞培养技术感兴趣的生物。利用基因工程和体内同源重组的组合的其他方法充其量效率低下。重新组合提供了一种直接在细菌染色体上产生基因敲除突变的新方法,或者将体内任何质粒或BAC修改为在其他生物体中敲除的前奏。构造设计为基础对,
骨形态发生蛋白2(BMP2)敲除稳态铁调节剂(HFE)敲除小鼠中的血色素沉着病,而不是BMP6敲除小鼠。Hepatology 2020; 72(2):642-655。(PMID:31778583)。(*平等贡献)10。Wang Cy,Xiao X,Bayer A,Xu Y,Dev S,Canali S,Nair AV,Masia R,Babitt JL。消融
动脉粥样硬化发育[4]。apoC3是TG代谢的关键调节剂,是一种水溶性的低分子量脂蛋白,与HDL,VLDLS,CM和LDL一起存在于等离子体中[22]。研究表明,APOC3水平升高抑制了LPL和HL的活性,LPL和HL的活性延迟了甘油三酸酯 - 富含脂蛋白的脂蛋白清除率并增加了血浆中的水平,最终导致TG代谢受损[23]。尽管对APOC3的体内研究主要基于小鼠模型,但兔模型具有多种优势,例如更容易维持,主动脉的合适尺寸,高繁殖力和短期妊娠期[24],以及类似的脂质代谢和心血管病理生理学,如人类[25]。例如,肝LDL受体通常在兔子中像人类一样不活跃,
gryllus bimaculatus是一种生物学领域的新兴模型生物,例如行为,神经病学,生理学和遗传学。最近,反向遗传学的应用为理解具有特定生理反应的基因调查网络的功能基因组学和操纵基因调节网络提供了机会。bimaculatus。在g中使用CRISPR/ CAS9系统。bimaculatus,我们提出了与昆虫黑色素和儿茶酚胺生物合成途径有关的酪氨酸羟化酶(Th)和黄色Y的有效敲低。作为一种酶,将酪氨酸转化为3,4-二羟基苯基甲基甲基甲烷,限制了途径中的第一步反应。黄色蛋白质(Dopachrome Convertion酶,DCE)也参与黑色素生物合成途径。色素沉着中黑色素生物发生的调节系统和分子机制及其在G中的物理功能。bimaculatus尚未因缺乏体内模型而被很好地定义。在F 0个个体和可遗传的F 1后代都检测到核苷酸的缺失和核苷酸核苷酸的插入。我们确认通过定量的实时PCR分析在突变体中下调了Th和Yel-Y-Y。与对照组相比,Th和黄色基因的突变导致色素沉着缺陷。大多数F 0若虫具有第一个幼体的基因突变,而唯一的成年人在机翼和腿部有很明显的缺陷。但是,我们无法获得第一个龄的所有F 2死亡的TH突变体的任何纯合子。bimaculatus。因此,基因对于G的生长和发展非常重要。当将黄色基因拆除时,g时为71.43%。bimaculatus是浅棕色,腹部有轻微的镶嵌物。黄色基因可以通过杂交实验稳定地遗传,没有明显的表型,除了较轻的表皮颜色。目前的功能研究表明,Th和黄色在色素沉着中的基本作用,TH具有多巴胺合成在G中胚胎发育中的深远而广泛的作用。bimaculatus。
抽象的太平洋牡蛎(Crassostrea gigas)是世界上种植最广泛的贝类物种之一。由于其经济价值和复杂的生命周期,涉及从自由宽松的幼虫到无柄少年的急剧变化,因此C.Gigas被用作发展,环境和水产养殖研究的模型。但是,由于缺乏功能分析的遗传工具,与生物或经济特征相关的基因功能无法轻易确定。在这里,我们报告了CRISPR/CAS9技术在C.Gigas中成功应用肌球蛋白基本光链基因(CGMELC)。C.注入SGRNA/CAS9的GIGAS胚胎在目标部位包含广泛的indel突变。突变幼虫显示出缺陷的肌肉和运动降低。此外,CGMELC的敲除破坏了幼虫中肌球蛋白重链阳性肌纤维的表达和图案。一起,这些数据表明CGMELC参与牡蛎幼虫中的幼虫肌肉收缩和肌发生。