摘要 综述目的 本综述旨在强调与仿生肢体和体感反馈恢复相关的多感觉整合过程日益增长的重要性。 最新发现 通过神经刺激恢复准现实感觉已被证明可为肢体截肢者带来功能和运动益处。近期,与人工触觉相关的认知过程似乎在假肢的完全整合和接受中发挥着至关重要的作用。 摘要 仿生肢体中实现的人工感觉反馈增强了截肢者对假肢的认知整合。多感觉体验是可以测量的,必须在设计新型体感神经假体时予以考虑,其目标是为假肢使用者提供逼真的感觉体验。正确整合这些感觉信号将保证更高水平的认知益处,从而实现更好的假肢并减少感知到的肢体扭曲。
● 需要在必须保护的生态环境中优化可可种植。据(Bessombes 2015)称,秘鲁是世界第二大可可出口国。
版权页 版权所有 2021 国际药学联合会 (FIP) 国际药学联合会 (FIP) Andries Bickerweg 5 2517 JP 海牙 荷兰 www.fip.org 保留所有权利。 未经引用出处,不得将本出版物的任何部分存储在任何检索系统中或以任何形式或手段(电子、机械、录音或其他方式)转录。 FIP 对因使用本报告中的任何数据和信息而造成的任何损害不承担任何责任。已采取一切措施确保本报告中提供的数据和信息的准确性。 作者: Matthew Hung(FIP 实践发展项目助理) Victoria Chinwendu Ezeudensi(FIP 志愿者,尼日利亚) Gonçalo Sousa Pinto(FIP 实践发展和转型负责人) 本工具包包含来自 FIP 社区和医院药房部门的多项贡献,并在致谢部分列出。编辑:Gonçalo Sousa Pinto(FIP 实践发展与转型负责人)Matthew Hung(FIP 实践发展项目助理)Catherine Duggan(FIP 首席执行官)推荐引用:国际药学联合会 (FIP)。药物协调:药剂师工具包。海牙:国际药学联合会;2021 封面图片:© Tero Vesalainen | shutterstock.com
胶质母细胞瘤(GBM)代表了由于其侵略性而引起的重大治疗挑战。肿瘤治疗场(TTFields)提出了一种有前途的GBM治疗方法。TTFIELD的主要机制,一种抗魔法作用,以及许多间接作用,包括增加的细胞膜渗透性,这与其他治疗方式相结合。当前的组合通常包括化学疗法,尤其是替莫唑胺(TMZ)的化学疗法,但是,新兴的数据表明,靶向疗法,放射疗法和免疫疗法的潜在协同作用。ttfields表现出最小的副作用,主要是与皮肤相关的,对疗法的合并没有明显的障碍。通过几项注册后研究证明了TTFields在GBM治疗中的有效性,主张持续研究以优化患者的总体生存(OS)和无进展生存期(PFS),而不是仅专注于生活质量。
英国利兹大学利兹大学的地理学和水学院; B英国利兹大学土木工程学院B; C以色列贝特达根农业部土壤侵蚀研究站土壤保护部; D Kinneret Limnological实验室,以色列海洋学和林木研究,以色列米格达尔; E Zuckerberg水研究所,雅各布·布莱斯坦(Jacob Blaustein)的沙漠研究研究所,以色列内盖夫本·古里安大学; F Yorkshire Water Services Ltd,英国布拉德福德; G德国玛格德堡的Helmholtz环境研究中心水生生态系统分析与管理部; H英国伯明翰伯明翰大学地理,地球与环境科学学院; I IHCANTABRIA - 西班牙桑坦德市的de la la cantabria Instituto dehidráulicaInstituto; J布里斯托尔大学布里斯托尔大学工程,数学和技术学院J; K Escuela de Ingenieria y Ciencias,Tecnologico de Monterrey,墨西哥Nuevo
●SIPA教师顾问,Christine Capilouto教授对Capstone项目的指导和监督。●尼日利亚的农村电气化机构(REA)在我们在尼日利亚逗留期间的热情款待 - 安排对Petti和Toto的现场访问,提供他们对迷你网格的见解,并将团队与其他利益相关者联系起来。特别感谢David Otu的勤奋努力和与REA的有效沟通,以确保富有成效的国内访问。●哥伦比亚大学的国际公共事务学院(SIPA)提供了有关旅行物流的财务支持和指导●尼日利亚政府的专家和从业人员,非营利组织,公司和多边组织以及学术界,并咨询了学术界,以分享他们的宝贵知识和专业知识。
摘要 — 戏剧作品中的情感识别在基本的人机交互、情感计算和其他各种应用中起着关键作用。传统的单模态情感识别系统在捕捉人类情感的复杂性和细微差别方面往往面临挑战。为此,本研究调查了多种模态信息的整合,包括面部表情、语音和生理信号,以增强情感识别系统的稳健性和准确性。通过结合这些不同的信息来源,我们的目标是更全面地了解人类的情感,并提高情感识别模型的性能。该研究探索了各种方法,包括特征融合、注意力机制和跨模态迁移学习,以有效地结合和利用来自面部表情、语音和生理信号的信息。此外,我们解决了与领域适应和缺失数据处理相关的挑战,确保所提出的多模态方法在数据收集条件可能变化的现实场景中保持稳健。为了证实所提出方法的有效性,我们在为多模态情感识别精心制作的基准数据集上进行了实验。该数据集包括通过面部特征、录音和生理传感器捕捉到的各种情绪表达。评估指标经过精心选择,以评估模型在各种模式下捕捉人类情绪的复杂性和细化程度的能力。我们的研究通过深入了解面部表情、语音和生理信号之间的相互作用,加深了对多模态情绪识别的理解。所提出的框架不仅提高了情绪识别的准确性,而且还提供了对情绪状态的更全面理解,促进了人机交互和情感计算应用的进步。
方法 研究设计为国际多队列合作。使用 Logistic 回归比较 2012 年 1 月 1 日后开始使用整合酶链转移抑制剂 (INSTI)、当代非核苷逆转录酶抑制剂 (NNRTI) 或加强蛋白酶抑制剂 (PI/b) 和两种核苷(酸)开始 ART 后 12 3 个月的病毒学和免疫学结果。综合治疗结果 (cTO) 将成功定义为 VL < 200 HIV-1 RNA 拷贝/mL,没有改变治疗方案,也没有艾滋病/死亡事件。免疫学成功定义为 CD4 计数 > 750 细胞/ l L 或增加 33%,而基线 CD4 计数为 ≥ 500 细胞/ l L。泊松回归比较了临床失败(开始 ART 后 ≥ 14 天的艾滋病/死亡)。确定了每个终点的 ART 类别与年龄、CD4 计数和 VL 之间的相互作用。
摘要。大多数有关归纳学习的研究一直关注定性学习,这些学习从给定的事实引起了概念性的逻辑式描述。相比之下,定量学习涉及发现表征经验数据的数值定律。这项研究试图通过结合新开发的启发式方法将方程与先前开发的概念学习方法相结合,以整合两种类型的学习,而归纳学习计划AQ11则体现了这两种学习。结果系统,算法,制定了绑定观察到的数据的子集的方程,并得出了明确的逻辑样式描述,以说明这些方程的适用性条件,此外,还引入了几种新的定量ICARNing技术。单位分析通过检查变量的兼容性“单位”。apportionali o'图搜索解决了识别应输入方程的相关变量的问题。暂停搜索通过启发式评估重点关注搜索空间。物理和化学的几个例子证明了算盘的能力。
摘要 - 尽管垃圾箱是机器人操纵的关键基准任务,但社区主要集中于将刚性直线物体放置在容器中。我们通过呈现一只软机器人手,结合视力,基于运动的本体感受和软触觉传感器来识别,排序和包装未知物体的流。这种多模式传感方法使我们的软机器人操纵器能够估计物体的大小和刚度,从而使我们能够将“包装好容器”的不定定义的人类概念转化为可实现的指标。我们通过逼真的杂货包装场景证明了这种软机器人系统的有效性,其中任意形状,大小和刚度的物体向下移动传送带,必须智能地放置以避免粉碎精致的物体。将触觉和本体感受反馈与外部视力结合起来,与无传感器基线(少9倍)和仅视觉的基线相比,项目受损的填料操作显着降低(4。少5×)技术,成功地证明了软机器人系统中多种感应方式的整合如何解决复杂的操作应用。
