本文对2007年至2023年的自闭症谱系障碍(ASD)的AI治疗研究提供了全面的概述,重点介绍了各个国家,机构,作者和关键词的全球贡献。美国以164个文件和4988次引用,强调了其在ASD疗法的AI技术中的核心作用,随后是中国的重大贡献(90个文件,1190个引用)和印度(65个文档,564个引用)。像斯坦福大学和麦吉尔大学这样的机构展示了大量的研究成果,而丹尼斯·沃尔(Dennis Wall)等作者则具有突出的贡献,这些贡献使诊断自闭症随着AI的使用而更加有效。关键字如“机器学习”,“自闭症谱系障碍”和“儿童”占主导地位,反映了为ASD干预措施利用技术的持续努力。总的来说,该分析强调了通过协作研究和技术创新来增强ASD治疗方法的全球动态努力。
结果:有1,280个出版物符合19日,符合先天免疫的搜索策略,并于2022年1月1日至2022年10月31日出版。九百13篇文章和评论。美国的出版物数量最高(NP)为276,而没有自我引用的引用数量为7,085,而H-Index的H-Index为42,其中占总出版物的30.23%,其次是中国(NP:135,NC:135,NC:4,798和H-indindex:23),贡献了14.79%。关于NP的NP,Netea,Mihai G.(NP:7)来自荷兰是最有生产力的作者,其次是Joosten,Leo A.B.(NP:6)和Lu,Kuo-Cheng(NP:6)。法国法国研究型大学的出版物最多(NP:31,NC:2,071,H-INDEX:13),平均引文数(ACN)为67。免疫学杂志期刊具有最多的出版物(NP:89,NC:1,097,ACN:12.52)。“逃避”(强度1.76,2021-2022),“中和抗体”(强度1.76,2021-2022),“ Messenger RNA”(强度1.76,2021-2022),“线粒体DNA”,“力量DNA”(强度1.51,2021-2021-2022),“长度”(2021-2022),” Toll样受体”(强度1.51,2021-2022)是该领域的新兴关键字。
摘要。飞机燃气轮机发动机的开发已广泛用于开发高级材料。然而,这种复杂的开发过程是通过减少体重,更高的温度能力和/或降低冷却来证明的,每种都会提高效率。这是高温陶瓷取得了很大进步的地方,陶瓷基质复合材料(CMC)在前景中。CMC分为非氧化物和基于氧化物的CMC。两个家庭的材料类型具有很高的潜力,可以在高温推进应用中使用。典型的基于氧化物的基于氧化物纤维和氧化物基质(OX-OX)。一些最常见的氧化物子类别是氧化铝,绿地,陶瓷和氧化锆陶瓷。这样的基质复合材料例如在燃气轮机发动机和排气喷嘴的燃烧衬里中使用。然而,直到现在,尚未就此类应用的可用基于氧化物的CMC进行彻底的研究。本文着重于评估有关机械和热性能的可用氧化陶瓷基质复合材料的文献调查。
https://doi.org/10.15159/ar.21.131关于在建筑材料中使用天然纤维的文献计量分析G.M.G.Ferreira 1,D。Cecchin 1,*,A.R.G.de azevedo 2,i.c.r.p.Valadão1,K.A。Costa 3,T.R。Silva 4,F。Ferreira 5,P.I.S。Amaral 6,C.M。huther 1,F.A。Sousa 7,J.O。Castro 8,P.F.P。Ferraz 8和M.A.Teixeira 1 1联邦Fluminense University(UFF),农业工程与环境系,Street Passo daPátria,n。 156,BOA VIAGEM,NITERói-RJ,巴西2北Fluminense州立大学(UENF),土木工程系,Goytacazes Campos,RJ,巴西,3联邦Fluminense University(UFF),生产工程系,工人大道,n。 420,Vila Santa Cecilia,Volta Redonda-RJ,巴西4 North Fluminense State University(UENF),高级材料实验室(LAMAV),AV。alberto lamego,2000,28013-602 Campos dos goytacazes-rj,巴西·弗林宁斯大学(UFF),冶金工程系(VMT) 130-000 Alfenas-MG,巴西7 Semag/Aracruz,AV。Morobá,n。 20,BR 29192-733 BairroMorobá-es,巴西8联邦拉夫拉斯大学(UFLA),大学校园,邮政SCODE 3037 LAVRAS,MG,BRABASIL *通信:Daianececchin@id.uff.uff.uff.uff.br.br.br receaved:Feburoy 2 ND,2021年,2021年;接受:2021年8月3日;出版:2021年8月30日摘要。由于人口对可持续性主题的兴趣越来越大,因此与民用建筑领域的主题相关的出版物有所增长。农业废物已成为一个环境问题,由于自然纤维的特性和改善其产品机械性能的可能性,因此自然纤维在废物的再利用中找到了空间。为了达到可持续的建筑需求,以及重复使用废物的需求,研究开始分析天然纤维在建筑材料中的应用。通过搜索术语“天然纤维”和“建筑材料”术语限制在主要WOS集合中的“天然纤维”和“建筑材料”术语时,通过搜索“天然纤维”和“建筑材料”术语进行的研究提供了。 使用Vosviewer(VOS)软件中的BiblioMetrics分析了与出版物,文件的原产国,文件的原产国,作者使用的关键字以及每个文档的引用数量。 分析的结果表明,多年来与该主题相关的文件的增加,该地区研究最多的国家分别是中国(16),美国(14)和巴西(11)。 对关键词进行分析后提出的结果表明,自然纤维(61个出现),机械性能(44个出现)和复合材料(31例出现)是分析的中出现最高的单词。。使用Vosviewer(VOS)软件中的BiblioMetrics分析了与出版物,文件的原产国,文件的原产国,作者使用的关键字以及每个文档的引用数量。分析的结果表明,多年来与该主题相关的文件的增加,该地区研究最多的国家分别是中国(16),美国(14)和巴西(11)。对关键词进行分析后提出的结果表明,自然纤维(61个出现),机械性能(44个出现)和复合材料(31例出现)是分析的
心理层面上的简易安全性逐渐享誉为心理健康问题和心理健康的基础。Stephen Porges(2011)提出的基于多价理论的安全概念已成为理解自主神经系统在调节社会行为,情感处理和生理反应中的作用的全面结构。本综述旨在探索多相理论在理解精神疾病中的应用,重点是自主神经系统失调如何影响情绪和行为表现,从而有助于发展有效的治疗干预措施,旨在增强患有精神病患者的安全性和福祉的有效治疗干预措施。将基于PRISMA模型的系统文献审查技术用于此目的。来源是通过PubMed,Apa Psycarticles,PLOS,Research Gate,Google Scholar和PubMed Central(PMC)数据库获得的,使用不同的关键词作为主要描述符,并将其限制为从2013年至2023年至2023年发表的英语文章中的来源。综述了来自各种研究的研究结果,这些研究调查了多个多相理论与精神疾病之间的关联,包括焦虑症,抑郁症,精神病,精神病,创伤后应激障碍(PTSD),边缘性人格障碍以及儿童期疾病以及包括行为障碍,注意力缺陷多动态障碍(ADHD)和自动障碍(以及自动化障碍(以及自动障碍)(以及Assism spectrum spectrum spectrim spectrum spectrum spectrum spectrim)(以及Assiss spectrum spectrim spectrum)结果表明,患有这些精神疾病的人经常表现出自主神经系统失调,正如多个多相理论所提出的那样,这似乎是许多精神疾病中的共同特征。系统评价强调了心理健康的生理方面的重要性,并表明着重于自主法规的干预措施可能会增加与精神疾病有关的基本症状。其他研究工作是可以辩护的,以阐明主要机制并改善基于多相理论的干预措施的含义,以获得更好的临床结果。
结论:尿道憩室癌是尿道的一种罕见且高度侵略性的恶性肿瘤,预后不良。隐藏了尿道憩室癌的发作,其临床表现是非专业和多样的。术前诊断具有挑战性,成像研究和膀胱镜检查是尿道憩室癌的主要术前诊断方法。病理学和免疫组织化学是确认诊断的基础。目前,国际上没有针对女性尿道憩室癌的统一治疗方案。对于没有远处转移的尿道憩室癌的女性患者,手术仍然是主要治疗方法。对于远处转移的患者,可以考虑手术,化学疗法和放射疗法的组合。基因测试和靶向免疫疗法为将来的治疗提供了新的方法。
摘要 用户对人工智能 (AI) 系统的信任已得到越来越多的认可,并被证明是促进采用的关键因素。有人提出,支持人工智能的系统必须超越以技术为中心的方法,转向以人为本的方法,这是人机交互 (HCI) 领域的核心原则。本评论旨在概述 23 项实证研究中的用户信任定义、影响因素和测量方法,以收集未来技术和设计策略、研究和计划的见解,以校准用户与人工智能的关系。研究结果证实,定义信任的方法不止一种。选择最合适的信任定义来描述特定环境中的用户信任应该是重点,而不是比较定义。研究发现,用户对人工智能系统的信任受到三个主要主题的影响,即社会伦理考虑、技术和设计特征以及用户特征。用户特征在研究结果中占主导地位,强调了从开发到监控人工智能系统的过程中用户参与的重要性。研究还发现,用户和系统的不同环境和各种特征也会影响用户信任,强调了根据目标用户群的特征选择和定制系统功能的重要性。重要的是,社会伦理考虑可以为确保用户与人工智能互动的环境足以建立和维持信任关系铺平道路。在衡量用户信任方面,调查是最常用的方法,其次是访谈和焦点小组。总之,在使用或讨论支持 AI 的系统的每个情况下,都需要直接解决用户信任问题。此外,校准用户与 AI 的关系需要找到不仅对用户而且对系统都适用的最佳平衡。
观察:总体而言,迄今为止的研究有限,并且主要集中在细菌上,这可能是因为 16s rRNA 测序简单且具有成本效益,尽管其分辨率较低且无法确定功能能力/改变。然而,这忽略了所有其他微生物群,包括真菌、病毒和噬菌体,它们正在成为人类微生物组的关键成员。许多研究是在临床前模型和/或世界较发达地区的小型人体研究中进行的。观察到的关系很有希望,但目前还不能被认为是可靠或可推广的。具体来说,因果关系目前无法确定。对阿尔茨海默病的研究较多,其次是帕金森病,对 MS 的研究则很少。尽管如此,MS 的数据仍然令人鼓舞。
摘要 用户对人工智能 (AI) 系统的信任已越来越多地得到认可,并被证明是促进采用的关键要素。有人提出,人工智能系统必须超越以技术为中心的方法,走向以人为本的方法,这是人机交互 (HCI) 领域的核心原则。本综述旨在概述 23 项实证研究中的用户信任定义、影响因素和测量方法,以收集未来技术和设计策略、研究和计划的见解,以校准用户与人工智能的关系。研究结果证实,定义信任的方法不止一种。重点应该是选择最合适的信任定义来描述特定环境中的用户信任,而不是比较定义。研究发现,用户对人工智能系统的信任受到三个主要主题的影响,即社会伦理考虑、技术和设计特征以及用户特征。用户特征在研究结果中占主导地位,强调了用户参与从开发到监控人工智能系统的重要性。研究还发现,不同环境以及用户和系统的各种特征都会影响用户信任,这凸显了根据目标用户群的特征选择和定制系统功能的重要性。重要的是,社会伦理考虑可以为确保用户与人工智能互动的环境足以建立和维持信任关系铺平道路。在衡量用户信任方面,调查是最常用的方法,其次是访谈和焦点小组。总之,在使用或讨论人工智能系统的每一个环境中,都需要直接解决用户信任问题。此外,校准用户与人工智能的关系需要找到不仅对用户而且对系统都适用的最佳平衡点。
